Abstract:Transformers and their variants have achieved great success in speech processing. However, their multi-head self-attention mechanism is computationally expensive. Therefore, one novel selective state space model, Mamba, has been proposed as an alternative. Building on its success in automatic speech recognition, we apply Mamba for spoofing attack detection. Mamba is well-suited for this task as it can capture the artifacts in spoofed speech signals by handling long-length sequences. However, Mamba's performance may suffer when it is trained with limited labeled data. To mitigate this, we propose combining a new structure of Mamba based on a dual-column architecture with self-supervised learning, using the pre-trained wav2vec 2.0 model. The experiments show that our proposed approach achieves competitive results and faster inference on the ASVspoof 2021 LA and DF datasets, and on the more challenging In-the-Wild dataset, it emerges as the strongest candidate for spoofing attack detection. The code will be publicly released in due course.
Abstract:Sound Event Detection (SED) is challenging in noisy environments where overlapping sounds obscure target events. Language-queried audio source separation (LASS) aims to isolate the target sound events from a noisy clip. However, this approach can fail when the exact target sound is unknown, particularly in noisy test sets, leading to reduced performance. To address this issue, we leverage the capabilities of large language models (LLMs) to analyze and summarize acoustic data. By using LLMs to identify and select specific noise types, we implement a noise augmentation method for noise-robust fine-tuning. The fine-tuned model is applied to predict clip-wise event predictions as text queries for the LASS model. Our studies demonstrate that the proposed method improves SED performance in noisy environments. This work represents an early application of LLMs in noise-robust SED and suggests a promising direction for handling overlapping events in SED. Codes and pretrained models are available at https://github.com/apple-yinhan/Noise-robust-SED.
Abstract:As large language models (LLMs) continue to advance, ensuring their alignment with human values becomes increasingly critical. Traditional alignment methods heavily rely on human feedback to fine-tune models. With the emergence of superhuman models whose outputs may surpass human understanding, evaluating and aligning these models using human judgments poses significant challenges. To address the challenges, recent works use weak supervisors to elicit knowledge from much stronger models. However, there are important disanalogies between the empirical setup in the existing works and the genuine goal of alignment. We remark that existing works investigate the phenomenon of weak-to-strong generation in analogous setup (i.e., binary classification), rather than practical alignment-relevant tasks (e.g., safety). In this paper, we bridge this gap by extending weak-to-strong generation to the context of practical alignment. We empirically demonstrate the widespread phenomenon of weak-to-strong generation in three complicated alignment tasks: safety, toxicity, and legal reasoning}. Furthermore, we explore efficient strategies for improving alignment performance to enhance the quality of model outcomes. Lastly, we summarize and analyze the challenges and potential solutions in regard to specific alignment tasks, which we hope to catalyze the research progress on the topic of weak-to-strong generalization. Our code is released at https://github.com/yeruimeng/WTS.git.
Abstract:Spoken keyword spotting (KWS) is crucial for identifying keywords within audio inputs and is widely used in applications like Apple Siri and Google Home, particularly on edge devices. Current deep learning-based KWS systems, which are typically trained on a limited set of keywords, can suffer from performance degradation when encountering new domains, a challenge often addressed through few-shot fine-tuning. However, this adaptation frequently leads to catastrophic forgetting, where the model's performance on original data deteriorates. Progressive continual learning (CL) strategies have been proposed to overcome this, but they face limitations such as the need for task-ID information and increased storage, making them less practical for lightweight devices. To address these challenges, we introduce Dark Experience for Keyword Spotting (DE-KWS), a novel CL approach that leverages dark knowledge to distill past experiences throughout the training process. DE-KWS combines rehearsal and distillation, using both ground truth labels and logits stored in a memory buffer to maintain model performance across tasks. Evaluations on the Google Speech Command dataset show that DE-KWS outperforms existing CL baselines in average accuracy without increasing model size, offering an effective solution for resource-constrained edge devices. The scripts are available on GitHub for the future research.
Abstract:Sound source localization (SSL) determines the position of sound sources using multi-channel audio data. It is commonly used to improve speech enhancement and separation. Extracting spatial features is crucial for SSL, especially in challenging acoustic environments. Previous studies performed well based on long short-term memory models. Recently, a novel scalable SSM referred to as Mamba demonstrated notable performance across various sequence-based modalities, including audio and speech. This study introduces the Mamba for SSL tasks. We consider the Mamba-based model to analyze spatial features from speech signals by fusing both time and frequency features, and we develop an SSL system called TF-Mamba. This system integrates time and frequency fusion, with Bidirectional Mamba managing both time-wise and frequency-wise processing. We conduct the experiments on the simulated dataset and the LOCATA dataset. Experiments show that TF-Mamba significantly outperforms other advanced methods on simulated and real-world data.
Abstract:This paper presents NGP-RT, a novel approach for enhancing the rendering speed of Instant-NGP to achieve real-time novel view synthesis. As a classic NeRF-based method, Instant-NGP stores implicit features in multi-level grids or hash tables and applies a shallow MLP to convert the implicit features into explicit colors and densities. Although it achieves fast training speed, there is still a lot of room for improvement in its rendering speed due to the per-point MLP executions for implicit multi-level feature aggregation, especially for real-time applications. To address this challenge, our proposed NGP-RT explicitly stores colors and densities as hash features, and leverages a lightweight attention mechanism to disambiguate the hash collisions instead of using computationally intensive MLP. At the rendering stage, NGP-RT incorporates a pre-computed occupancy distance grid into the ray marching strategy to inform the distance to the nearest occupied voxel, thereby reducing the number of marching points and global memory access. Experimental results show that on the challenging Mip-NeRF360 dataset, NGP-RT achieves better rendering quality than previous NeRF-based methods, achieving 108 fps at 1080p resolution on a single Nvidia RTX 3090 GPU. Our approach is promising for NeRF-based real-time applications that require efficient and high-quality rendering.
Abstract:Federated learning, while being a promising approach for collaborative model training, is susceptible to poisoning attacks due to its decentralized nature. Backdoor attacks, in particular, have shown remarkable stealthiness, as they selectively compromise predictions for inputs containing triggers. Previous endeavors to detect and mitigate such attacks are based on the Independent and Identically Distributed (IID) data assumption where benign model updates exhibit high-level similarity in multiple feature spaces due to IID data. Thus, outliers are detected as backdoor attacks. Nevertheless, non-IID data presents substantial challenges in backdoor attack detection, as the data variety introduces variance among benign models, making outlier detection-based mechanisms less effective. We propose a novel distribution-aware anomaly detection mechanism, BoBa, to address this problem. In order to differentiate outliers arising from data variety versus backdoor attack, we propose to break down the problem into two steps: clustering clients utilizing their data distribution followed by a voting-based detection. Based on the intuition that clustering and subsequent backdoor detection can drastically benefit from knowing client data distributions, we propose a novel data distribution inference mechanism. To improve detection robustness, we introduce an overlapping clustering method, where each client is associated with multiple clusters, ensuring that the trustworthiness of a model update is assessed collectively by multiple clusters rather than a single cluster. Through extensive evaluations, we demonstrate that BoBa can reduce the attack success rate to lower than 0.001 while maintaining high main task accuracy across various attack strategies and experimental settings.
Abstract:This work aims to advance sound event detection (SED) research by presenting a new large language model (LLM)-powered dataset namely wild domestic environment sound event detection (WildDESED). It is crafted as an extension to the original DESED dataset to reflect diverse acoustic variability and complex noises in home settings. We leveraged LLMs to generate eight different domestic scenarios based on target sound categories of the DESED dataset. Then we enriched the scenarios with a carefully tailored mixture of noises selected from AudioSet and ensured no overlap with target sound. We consider widely popular convolutional neural recurrent network to study WildDESED dataset, which depicts its challenging nature. We then apply curriculum learning by gradually increasing noise complexity to enhance the model's generalization capabilities across various noise levels. Our results with this approach show improvements within the noisy environment, validating the effectiveness on the WildDESED dataset promoting noise-robust SED advancements.
Abstract:This work explores class-incremental learning (CIL) for sound event detection (SED), advancing adaptability towards real-world scenarios. CIL's success in domains like computer vision inspired our SED-tailored method, addressing the unique challenges of diverse and complex audio environments. Our approach employs an independent unsupervised learning framework with a distillation loss function to integrate new sound classes while preserving the SED model consistency across incremental tasks. We further enhance this framework with a sample selection strategy for unlabeled data and a balanced exemplar update mechanism, ensuring varied and illustrative sound representations. Evaluating various continual learning methods on the DCASE 2023 Task 4 dataset, we find that our research offers insights into each method's applicability for real-world SED systems that can have newly added sound classes. The findings also delineate future directions of CIL in dynamic audio settings.
Abstract:This study introduces a progressive neural network (PNN) model for direction of arrival (DOA) estimation, DOA-PNN, addressing the challenge due to catastrophic forgetting in adapting dynamic acoustic environments. While traditional methods such as GCC, MUSIC, and SRP-PHAT are effective in static settings, they perform worse in noisy, reverberant conditions. Deep learning models, particularly CNNs, offer improvements but struggle with a mismatch configuration between the training and inference phases. The proposed DOA-PNN overcomes these limitations by incorporating task incremental learning of continual learning, allowing for adaptation across varying acoustic scenarios with less forgetting of previously learned knowledge. Featuring task-specific sub-networks and a scaling mechanism, DOA-PNN efficiently manages parameter growth, ensuring high performance across incremental microphone configurations. We study DOA-PNN on a simulated data under various mic distance based microphone settings. The studies reveal its capability to maintain performance with minimal parameter increase, presenting an efficient solution for DOA estimation.