Abstract:3D reconstruction garners increasing attention alongside the advancement of high-level image applications, where dense stereo matching (DSM) serves as a pivotal technique. Previous studies often rely on publicly available datasets for training, focusing on modifying network architectures or incorporating specialized modules to extract domain-invariant features and thus improve model robustness. In contrast, inspired by single-frame structured-light phase-shifting encoding, this study introduces RGB-Speckle, a cross-scene 3D reconstruction framework based on an active stereo camera system, designed to enhance robustness. Specifically, we propose a novel phase pre-normalization encoding-decoding method: first, we randomly perturb phase-shift maps and embed them into the three RGB channels to generate color speckle patterns; subsequently, the camera captures phase-encoded images modulated by objects as input to a stereo matching network. This technique effectively mitigates external interference and ensures consistent input data for RGB-Speckle, thereby bolstering cross-domain 3D reconstruction stability. To validate the proposed method, we conduct complex experiments: (1) construct a color speckle dataset for complex scenarios based on the proposed encoding scheme; (2) evaluate the impact of the phase pre-normalization encoding-decoding technique on 3D reconstruction accuracy; and (3) further investigate its robustness across diverse conditions. Experimental results demonstrate that the proposed RGB-Speckle model offers significant advantages in cross-domain and cross-scene 3D reconstruction tasks, enhancing model generalization and reinforcing robustness in challenging environments, thus providing a novel solution for robust 3D reconstruction research.
Abstract:Noise in data appears to be inevitable in most real-world machine learning applications and would cause severe overfitting problems. Not only can data features contain noise, but labels are also prone to be noisy due to human input. In this paper, rather than noisy label learning in multiclass classifications, we instead focus on the less explored area of noisy label learning for multilabel classifications. Specifically, we investigate the post-correction of predictions generated from classifiers learned with noisy labels. The reasons are two-fold. Firstly, this approach can directly work with the trained models to save computational resources. Secondly, it could be applied on top of other noisy label correction techniques to achieve further improvements. To handle this problem, we appeal to deep generative approaches that are possible for uncertainty estimation. Our model posits that label noise arises from a stochastic shift in the latent variable, providing a more robust and beneficial means for noisy learning. We develop both unsupervised and semi-supervised learning methods for our model. The extensive empirical study presents solid evidence to that our approach is able to consistently improve the independent models and performs better than a number of existing methods across various noisy label settings. Moreover, a comprehensive empirical analysis of the proposed method is carried out to validate its robustness, including sensitivity analysis and an ablation study, among other elements.
Abstract:We present a fundamental discovery that challenges our understanding of how complex reasoning emerges in large language models. While conventional wisdom suggests that sophisticated reasoning tasks demand extensive training data (>100,000 examples), we demonstrate that complex mathematical reasoning abilities can be effectively elicited with surprisingly few examples. Through comprehensive experiments, our proposed model LIMO demonstrates unprecedented performance in mathematical reasoning. With merely 817 curated training samples, LIMO achieves 57.1% accuracy on AIME and 94.8% on MATH, improving from previous SFT-based models' 6.5% and 59.2% respectively, while only using 1% of the training data required by previous approaches. LIMO demonstrates exceptional out-of-distribution generalization, achieving 40.5% absolute improvement across 10 diverse benchmarks, outperforming models trained on 100x more data, challenging the notion that SFT leads to memorization rather than generalization. Based on these results, we propose the Less-Is-More Reasoning Hypothesis (LIMO Hypothesis): In foundation models where domain knowledge has been comprehensively encoded during pre-training, sophisticated reasoning capabilities can emerge through minimal but precisely orchestrated demonstrations of cognitive processes. This hypothesis posits that the elicitation threshold for complex reasoning is determined by two key factors: (1) the completeness of the model's encoded knowledge foundation during pre-training, and (2) the effectiveness of post-training examples as "cognitive templates" that show the model how to utilize its knowledge base to solve complex reasoning tasks. To facilitate reproducibility and future research in data-efficient reasoning, we release LIMO as a comprehensive open-source suite at https://github.com/GAIR-NLP/LIMO.
Abstract:Distributed backdoor attacks (DBA) have shown a higher attack success rate than centralized attacks in centralized federated learning (FL). However, it has not been investigated in the decentralized FL. In this paper, we experimentally demonstrate that, while directly applying DBA to decentralized FL, the attack success rate depends on the distribution of attackers in the network architecture. Considering that the attackers can not decide their location, this paper aims to achieve a high attack success rate regardless of the attackers' location distribution. Specifically, we first design a method to detect the network by predicting the distance between any two attackers on the network. Then, based on the distance, we organize the attackers in different clusters. Lastly, we propose an algorithm to \textit{dynamically} embed local patterns decomposed from a global pattern into the different attackers in each cluster. We conduct a thorough empirical investigation and find that our method can, in benchmark datasets, outperform both centralized attacks and naive DBA in different decentralized frameworks.
Abstract:Transformers and their variants have achieved great success in speech processing. However, their multi-head self-attention mechanism is computationally expensive. Therefore, one novel selective state space model, Mamba, has been proposed as an alternative. Building on its success in automatic speech recognition, we apply Mamba for spoofing attack detection. Mamba is well-suited for this task as it can capture the artifacts in spoofed speech signals by handling long-length sequences. However, Mamba's performance may suffer when it is trained with limited labeled data. To mitigate this, we propose combining a new structure of Mamba based on a dual-column architecture with self-supervised learning, using the pre-trained wav2vec 2.0 model. The experiments show that our proposed approach achieves competitive results and faster inference on the ASVspoof 2021 LA and DF datasets, and on the more challenging In-the-Wild dataset, it emerges as the strongest candidate for spoofing attack detection. The code will be publicly released in due course.
Abstract:Sound Event Detection (SED) is challenging in noisy environments where overlapping sounds obscure target events. Language-queried audio source separation (LASS) aims to isolate the target sound events from a noisy clip. However, this approach can fail when the exact target sound is unknown, particularly in noisy test sets, leading to reduced performance. To address this issue, we leverage the capabilities of large language models (LLMs) to analyze and summarize acoustic data. By using LLMs to identify and select specific noise types, we implement a noise augmentation method for noise-robust fine-tuning. The fine-tuned model is applied to predict clip-wise event predictions as text queries for the LASS model. Our studies demonstrate that the proposed method improves SED performance in noisy environments. This work represents an early application of LLMs in noise-robust SED and suggests a promising direction for handling overlapping events in SED. Codes and pretrained models are available at https://github.com/apple-yinhan/Noise-robust-SED.
Abstract:As large language models (LLMs) continue to advance, ensuring their alignment with human values becomes increasingly critical. Traditional alignment methods heavily rely on human feedback to fine-tune models. With the emergence of superhuman models whose outputs may surpass human understanding, evaluating and aligning these models using human judgments poses significant challenges. To address the challenges, recent works use weak supervisors to elicit knowledge from much stronger models. However, there are important disanalogies between the empirical setup in the existing works and the genuine goal of alignment. We remark that existing works investigate the phenomenon of weak-to-strong generation in analogous setup (i.e., binary classification), rather than practical alignment-relevant tasks (e.g., safety). In this paper, we bridge this gap by extending weak-to-strong generation to the context of practical alignment. We empirically demonstrate the widespread phenomenon of weak-to-strong generation in three complicated alignment tasks: safety, toxicity, and legal reasoning}. Furthermore, we explore efficient strategies for improving alignment performance to enhance the quality of model outcomes. Lastly, we summarize and analyze the challenges and potential solutions in regard to specific alignment tasks, which we hope to catalyze the research progress on the topic of weak-to-strong generalization. Our code is released at https://github.com/yeruimeng/WTS.git.
Abstract:Spoken keyword spotting (KWS) is crucial for identifying keywords within audio inputs and is widely used in applications like Apple Siri and Google Home, particularly on edge devices. Current deep learning-based KWS systems, which are typically trained on a limited set of keywords, can suffer from performance degradation when encountering new domains, a challenge often addressed through few-shot fine-tuning. However, this adaptation frequently leads to catastrophic forgetting, where the model's performance on original data deteriorates. Progressive continual learning (CL) strategies have been proposed to overcome this, but they face limitations such as the need for task-ID information and increased storage, making them less practical for lightweight devices. To address these challenges, we introduce Dark Experience for Keyword Spotting (DE-KWS), a novel CL approach that leverages dark knowledge to distill past experiences throughout the training process. DE-KWS combines rehearsal and distillation, using both ground truth labels and logits stored in a memory buffer to maintain model performance across tasks. Evaluations on the Google Speech Command dataset show that DE-KWS outperforms existing CL baselines in average accuracy without increasing model size, offering an effective solution for resource-constrained edge devices. The scripts are available on GitHub for the future research.
Abstract:Sound source localization (SSL) determines the position of sound sources using multi-channel audio data. It is commonly used to improve speech enhancement and separation. Extracting spatial features is crucial for SSL, especially in challenging acoustic environments. Previous studies performed well based on long short-term memory models. Recently, a novel scalable SSM referred to as Mamba demonstrated notable performance across various sequence-based modalities, including audio and speech. This study introduces the Mamba for SSL tasks. We consider the Mamba-based model to analyze spatial features from speech signals by fusing both time and frequency features, and we develop an SSL system called TF-Mamba. This system integrates time and frequency fusion, with Bidirectional Mamba managing both time-wise and frequency-wise processing. We conduct the experiments on the simulated dataset and the LOCATA dataset. Experiments show that TF-Mamba significantly outperforms other advanced methods on simulated and real-world data.
Abstract:This paper presents NGP-RT, a novel approach for enhancing the rendering speed of Instant-NGP to achieve real-time novel view synthesis. As a classic NeRF-based method, Instant-NGP stores implicit features in multi-level grids or hash tables and applies a shallow MLP to convert the implicit features into explicit colors and densities. Although it achieves fast training speed, there is still a lot of room for improvement in its rendering speed due to the per-point MLP executions for implicit multi-level feature aggregation, especially for real-time applications. To address this challenge, our proposed NGP-RT explicitly stores colors and densities as hash features, and leverages a lightweight attention mechanism to disambiguate the hash collisions instead of using computationally intensive MLP. At the rendering stage, NGP-RT incorporates a pre-computed occupancy distance grid into the ray marching strategy to inform the distance to the nearest occupied voxel, thereby reducing the number of marching points and global memory access. Experimental results show that on the challenging Mip-NeRF360 dataset, NGP-RT achieves better rendering quality than previous NeRF-based methods, achieving 108 fps at 1080p resolution on a single Nvidia RTX 3090 GPU. Our approach is promising for NeRF-based real-time applications that require efficient and high-quality rendering.