Theory Lab, Central Research Institute, 2012 Labs, Huawei Technology Co. Ltd
Abstract:Dynamic positron emission tomography (PET) images can reveal the distribution of tracers in the organism and the dynamic processes involved in biochemical reactions, and it is widely used in clinical practice. Despite the high effectiveness of dynamic PET imaging in studying the kinetics and metabolic processes of radiotracers. Pro-longed scan times can cause discomfort for both patients and medical personnel. This study proposes a dynamic frame prediction method for dynamic PET imaging, reduc-ing dynamic PET scanning time by applying a multi-module deep learning framework composed of reversible and irreversible modules. The network can predict kinetic parameter images based on the early frames of dynamic PET images, and then generate complete dynamic PET images. In validation experiments with simulated data, our network demonstrated good predictive performance for kinetic parameters and was able to reconstruct high-quality dynamic PET images. Additionally, in clinical data experiments, the network exhibited good generalization performance and attached that the proposed method has promising clinical application prospects.
Abstract:Audio generation has achieved remarkable progress with the advance of sophisticated generative models, such as diffusion models (DMs) and autoregressive (AR) models. However, due to the naturally significant sequence length of audio, the efficiency of audio generation remains an essential issue to be addressed, especially for AR models that are incorporated in large language models (LLMs). In this paper, we analyze the token length of audio tokenization and propose a novel \textbf{S}cale-level \textbf{A}udio \textbf{T}okenizer (SAT), with improved residual quantization. Based on SAT, a scale-level \textbf{A}coustic \textbf{A}uto\textbf{R}egressive (AAR) modeling framework is further proposed, which shifts the next-token AR prediction to next-scale AR prediction, significantly reducing the training cost and inference time. To validate the effectiveness of the proposed approach, we comprehensively analyze design choices and demonstrate the proposed AAR framework achieves a remarkable \textbf{35}$\times$ faster inference speed and +\textbf{1.33} Fr\'echet Audio Distance (FAD) against baselines on the AudioSet benchmark. Code: \url{https://github.com/qiuk2/AAR}.
Abstract:Graph Transformer is a new architecture that surpasses GNNs in graph learning. While there emerge inspiring algorithm advancements, their practical adoption is still limited, particularly on real-world graphs involving up to millions of nodes. We observe existing graph transformers fail on large-scale graphs mainly due to heavy computation, limited scalability and inferior model quality. Motivated by these observations, we propose TorchGT, the first efficient, scalable, and accurate graph transformer training system. TorchGT optimizes training at different levels. At algorithm level, by harnessing the graph sparsity, TorchGT introduces a Dual-interleaved Attention which is computation-efficient and accuracy-maintained. At runtime level, TorchGT scales training across workers with a communication-light Cluster-aware Graph Parallelism. At kernel level, an Elastic Computation Reformation further optimizes the computation by reducing memory access latency in a dynamic way. Extensive experiments demonstrate that TorchGT boosts training by up to 62.7x and supports graph sequence lengths of up to 1M.
Abstract:Generalized category discovery presents a challenge in a realistic scenario, which requires the model's generalization ability to recognize unlabeled samples from known and unknown categories. This paper revisits the challenge of generalized category discovery through the lens of information maximization (InfoMax) with a probabilistic parametric classifier. Our findings reveal that ensuring independence between known and unknown classes while concurrently assuming a uniform probability distribution across all classes, yields an enlarged margin among known and unknown classes that promotes the model's performance. To achieve the aforementioned independence, we propose a novel InfoMax-based method, Regularized Parametric InfoMax (RPIM), which adopts pseudo labels to supervise unlabeled samples during InfoMax, while proposing a regularization to ensure the quality of the pseudo labels. Additionally, we introduce novel semantic-bias transformation to refine the features from the pre-trained model instead of direct fine-tuning to rescue the computational costs. Extensive experiments on six benchmark datasets validate the effectiveness of our method. RPIM significantly improves the performance regarding unknown classes, surpassing the state-of-the-art method by an average margin of 3.5%.
Abstract:Open compound domain adaptation (OCDA) aims to transfer knowledge from a labeled source domain to a mix of unlabeled homogeneous compound target domains while generalizing to open unseen domains. Existing OCDA methods solve the intra-domain gaps by a divide-and-conquer strategy, which divides the problem into several individual and parallel domain adaptation (DA) tasks. Such approaches often contain multiple sub-networks or stages, which may constrain the model's performance. In this work, starting from the general DA theory, we establish the generalization bound for the setting of OCDA. Built upon this, we argue that conventional OCDA approaches may substantially underestimate the inherent variance inside the compound target domains for model generalization. We subsequently present Stochastic Compound Mixing (SCMix), an augmentation strategy with the primary objective of mitigating the divergence between source and mixed target distributions. We provide theoretical analysis to substantiate the superiority of SCMix and prove that the previous methods are sub-groups of our methods. Extensive experiments show that our method attains a lower empirical risk on OCDA semantic segmentation tasks, thus supporting our theories. Combining the transformer architecture, SCMix achieves a notable performance boost compared to the SoTA results.
Abstract:The watch time is a significant indicator of user satisfaction in video recommender systems. However, the prediction of watch time as a target variable is often hindered by its highly imbalanced distribution with a scarcity of observations for larger target values and over-populated samples for small values. State-of-the-art watch time prediction models discretize the continuous watch time into a set of buckets in order to consider the distribution of watch time. However, it is highly uninvestigated how these discrete buckets should be created from the continuous watch time distribution, and existing discretization approaches suffer from either a large learning error or a large restoration error. To address this challenge, we propose a Classification-Restoration framework with Error-Adaptive-Discretization (CREAD) to accurately predict the watch time. The proposed framework contains a discretization module, a classification module, and a restoration module. It predicts the watch time through multiple classification problems. The discretization process is a key contribution of the CREAD framework. We theoretically analyze the impacts of the discretization on the learning error and the restoration error, and then propose the error-adaptive discretization (EAD) technique to better balance the two errors, which achieves better performance over traditional discretization approaches. We conduct detailed offline evaluations on a public dataset and an industrial dataset, both showing performance gains through the proposed approach. Moreover, We have fully launched our framework to Kwai App, an online video platform, which resulted in a significant increase in users' video watch time by 0.29% through A/B testing. These results highlight the effectiveness of the CREAD framework in watch time prediction in video recommender systems.
Abstract:Non-linear effects in long-haul, high-speed optical fiber systems significantly hinder channel capacity. While the Digital Backward Propagation algorithm (DBP) with adaptive filter (ADF) can mitigate these effects, it suffers from an overwhelming computational complexity. Recent solutions have incorporated deep neural networks in a data-driven strategy to alleviate this complexity in the DBP model. However, these models are often limited to a specific symbol rate and channel number, necessitating retraining for different settings, their performance declines significantly under high-speed and high-power conditions. We introduce Meta-DSP, a novel data-driven nonlinear compensation model based on meta-learning that processes multi-modal data across diverse transmission rates, power levels, and channel numbers. This not only enhances signal quality but also substantially reduces the complexity of the nonlinear processing algorithm. Our model delivers a 0.7 dB increase in the Q-factor over Electronic Dispersion Compensation (EDC), and compared to DBP, it curtails computational complexity by a factor of ten while retaining comparable performance. From the perspective of the entire signal processing system, the core idea of Meta-DSP can be employed in any segment of the overall communication system to enhance the model's scalability and generalization performance. Our research substantiates Meta-DSP's proficiency in addressing the critical parameters defining optical communication networks.
Abstract:The complex and dynamic propagation of oscillations and waves is often triggered by sources at unknown locations. Accurate source localization enables the elimination of the rotor core in atrial fibrillation (AFib) as an effective treatment for such severe cardiac disorder; it also finds potential use in locating the spreading source in natural disasters such as forest fires and tsunamis. However, existing approaches such as time of arrival (TOA) and time difference of arrival (TDOA) do not yield accurate localization results since they tacitly assume a constant signal propagation speed whereas realistic propagation is often non-static and heterogeneous. In this paper, we develop a nonlinear TDOA (NTDOA) approach which utilizes observational data from various positions to jointly learn the propagation speed at different angles and distances as well as the location of the source itself. Through examples of simulating the complex dynamics of electrical signals along the surface of the heart and satellite imagery from forest fires and tsunamis, we show that with a small handful of measurements, NTDOA, as a data-driven approach, can successfully locate the spreading source, leading also to better forecasting of the speed and direction of subsequent propagation.
Abstract:Wireless sensor networks require accurate target localization, often achieved through received signal strength (RSS) localization estimation based on maximum likelihood (ML). However, ML-based algorithms can suffer from issues such as low diversity, slow convergence, and local optima, which can significantly affect localization performance. In this paper, we propose a novel localization algorithm that combines opposition-based learning (OBL) and simulated annealing algorithm (SAA) to address these challenges. The algorithm begins by generating an initial solution randomly, which serves as the starting point for the SAA. Subsequently, OBL is employed to generate an opposing initial solution, effectively providing an alternative initial solution. The SAA is then executed independently on both the original and opposing initial solutions, optimizing each towards a potential optimal solution. The final solution is selected as the more effective of the two outcomes from the SAA, thereby reducing the likelihood of the algorithm becoming trapped in local optima. Simulation results indicate that the proposed algorithm consistently outperforms existing algorithms in terms of localization accuracy, demonstrating the effectiveness of our approach.
Abstract:Due to their ability to offer more comprehensive information than data from a single view, multi-view (multi-source, multi-modal, multi-perspective, etc.) data are being used more frequently in remote sensing tasks. However, as the number of views grows, the issue of data quality becomes more apparent, limiting the potential benefits of multi-view data. Although recent deep neural network (DNN) based models can learn the weight of data adaptively, a lack of research on explicitly quantifying the data quality of each view when fusing them renders these models inexplicable, performing unsatisfactorily and inflexible in downstream remote sensing tasks. To fill this gap, in this paper, evidential deep learning is introduced to the task of aerial-ground dual-view remote sensing scene classification to model the credibility of each view. Specifically, the theory of evidence is used to calculate an uncertainty value which describes the decision-making risk of each view. Based on this uncertainty, a novel decision-level fusion strategy is proposed to ensure that the view with lower risk obtains more weight, making the classification more credible. On two well-known, publicly available datasets of aerial-ground dual-view remote sensing images, the proposed approach achieves state-of-the-art results, demonstrating its effectiveness. The code and datasets of this article are available at the following address: https://github.com/gaopiaoliang/Evidential.