Tsinghua University
Abstract:Recent studies indicate that the denoising process in deep generative diffusion models implicitly learns and memorizes semantic information from the data distribution. These findings suggest that capturing more complex data distributions requires larger neural networks, leading to a substantial increase in computational demands, which in turn become the primary bottleneck in both training and inference of diffusion models. To this end, we introduce \textbf{G}enerative \textbf{M}odeling with \textbf{E}xplicit \textbf{M}emory (GMem), leveraging an external memory bank in both training and sampling phases of diffusion models. This approach preserves semantic information from data distributions, reducing reliance on neural network capacity for learning and generalizing across diverse datasets. The results are significant: our GMem enhances both training, sampling efficiency, and generation quality. For instance, on ImageNet at $256 \times 256$ resolution, GMem accelerates SiT training by over $46.7\times$, achieving the performance of a SiT model trained for $7M$ steps in fewer than $150K$ steps. Compared to the most efficient existing method, REPA, GMem still offers a $16\times$ speedup, attaining an FID score of 5.75 within $250K$ steps, whereas REPA requires over $4M$ steps. Additionally, our method achieves state-of-the-art generation quality, with an FID score of {3.56} without classifier-free guidance on ImageNet $256\times256$. Our code is available at \url{https://github.com/LINs-lab/GMem}.
Abstract:The ISCSLP 2024 Conversational Voice Clone (CoVoC) Challenge aims to benchmark and advance zero-shot spontaneous style voice cloning, particularly focusing on generating spontaneous behaviors in conversational speech. The challenge comprises two tracks: an unconstrained track without limitation on data and model usage, and a constrained track only allowing the use of constrained open-source datasets. A 100-hour high-quality conversational speech dataset is also made available with the challenge. This paper details the data, tracks, submitted systems, evaluation results, and findings.
Abstract:As the number of service robots and autonomous vehicles in human-centered environments grows, their requirements go beyond simply navigating to a destination. They must also take into account dynamic social contexts and ensure respect and comfort for others in shared spaces, which poses significant challenges for perception and planning. In this paper, we present a group-based social navigation framework GSON to enable mobile robots to perceive and exploit the social group of their surroundings by leveling the visual reasoning capability of the Large Multimodal Model (LMM). For perception, we apply visual prompting techniques to zero-shot extract the social relationship among pedestrians and combine the result with a robust pedestrian detection and tracking pipeline to alleviate the problem of low inference speed of the LMM. Given the perception result, the planning system is designed to avoid disrupting the current social structure. We adopt a social structure-based mid-level planner as a bridge between global path planning and local motion planning to preserve the global context and reactive response. The proposed method is validated on real-world mobile robot navigation tasks involving complex social structure understanding and reasoning. Experimental results demonstrate the effectiveness of the system in these scenarios compared with several baselines.
Abstract:Traditional recurrent neural network architectures, such as long short-term memory neural networks (LSTM), have historically held a prominent role in time series forecasting (TSF) tasks. While the recently introduced sLSTM for Natural Language Processing (NLP) introduces exponential gating and memory mixing that are beneficial for long term sequential learning, its potential short memory issue is a barrier to applying sLSTM directly in TSF. To address this, we propose a simple yet efficient algorithm named P-sLSTM, which is built upon sLSTM by incorporating patching and channel independence. These modifications substantially enhance sLSTM's performance in TSF, achieving state-of-the-art results. Furthermore, we provide theoretical justifications for our design, and conduct extensive comparative and analytical experiments to fully validate the efficiency and superior performance of our model.
Abstract:Continuous phase modulation (CPM) has extensive applications in wireless communications due to its high spectral and power efficiency. However, its nonlinear characteristics pose significant challenges for detection in frequency selective fading channels. This paper proposes an iterative receiver tailored for the detection of CPM signals over frequency selective fading channels. This design leverages the factor graph framework to integrate equalization, demodulation, and decoding functions. The equalizer employs the unitary approximate message passing (UAMP) algorithm, while the unitary transformation is implemented using the fast Fourier transform (FFT) with the aid of a cyclic prefix (CP), thereby achieving low computational complexity while with high performance. For CPM demodulation and channel decoding, with belief propagation (BP), we design a message passing-based maximum a posteriori (MAP) algorithm, and the message exchange between the demodulator, decoder and equalizer is elaborated. With proper message passing schedules, the receiver can achieve fast convergence. Simulation results show that compared with existing turbo receivers, the proposed receiver delivers significant performance enhancement with low computational complexity.
Abstract:Crime forecasting is a critical component of urban analysis and essential for stabilizing society today. Unlike other time series forecasting problems, crime incidents are sparse, particularly in small regions and within specific time periods. Traditional spatial-temporal deep learning models often struggle with this sparsity, as they typically cannot effectively handle the non-Gaussian nature of crime data, which is characterized by numerous zeros and over-dispersed patterns. To address these challenges, we introduce a novel approach termed Spatial Temporal Multivariate Zero-Inflated Negative Binomial Graph Neural Networks (STMGNN-ZINB). This framework leverages diffusion and convolution networks to analyze spatial, temporal, and multivariate correlations, enabling the parameterization of probabilistic distributions of crime incidents. By incorporating a Zero-Inflated Negative Binomial model, STMGNN-ZINB effectively manages the sparse nature of crime data, enhancing prediction accuracy and the precision of confidence intervals. Our evaluation on real-world datasets confirms that STMGNN-ZINB outperforms existing models, providing a more reliable tool for predicting and understanding crime dynamics.
Abstract:Graph Transformer is a new architecture that surpasses GNNs in graph learning. While there emerge inspiring algorithm advancements, their practical adoption is still limited, particularly on real-world graphs involving up to millions of nodes. We observe existing graph transformers fail on large-scale graphs mainly due to heavy computation, limited scalability and inferior model quality. Motivated by these observations, we propose TorchGT, the first efficient, scalable, and accurate graph transformer training system. TorchGT optimizes training at different levels. At algorithm level, by harnessing the graph sparsity, TorchGT introduces a Dual-interleaved Attention which is computation-efficient and accuracy-maintained. At runtime level, TorchGT scales training across workers with a communication-light Cluster-aware Graph Parallelism. At kernel level, an Elastic Computation Reformation further optimizes the computation by reducing memory access latency in a dynamic way. Extensive experiments demonstrate that TorchGT boosts training by up to 62.7x and supports graph sequence lengths of up to 1M.
Abstract:We present InternLM-XComposer-2.5 (IXC-2.5), a versatile large-vision language model that supports long-contextual input and output. IXC-2.5 excels in various text-image comprehension and composition applications, achieving GPT-4V level capabilities with merely 7B LLM backend. Trained with 24K interleaved image-text contexts, it can seamlessly extend to 96K long contexts via RoPE extrapolation. This long-context capability allows IXC-2.5 to excel in tasks requiring extensive input and output contexts. Compared to its previous 2.0 version, InternLM-XComposer-2.5 features three major upgrades in vision-language comprehension: (1) Ultra-High Resolution Understanding, (2) Fine-Grained Video Understanding, and (3) Multi-Turn Multi-Image Dialogue. In addition to comprehension, IXC-2.5 extends to two compelling applications using extra LoRA parameters for text-image composition: (1) Crafting Webpages and (2) Composing High-Quality Text-Image Articles. IXC-2.5 has been evaluated on 28 benchmarks, outperforming existing open-source state-of-the-art models on 16 benchmarks. It also surpasses or competes closely with GPT-4V and Gemini Pro on 16 key tasks. The InternLM-XComposer-2.5 is publicly available at https://github.com/InternLM/InternLM-XComposer.
Abstract:Data, the seminal opportunity and challenge in modern machine learning, currently constrains the scalability of representation learning and impedes the pace of model evolution. Existing paradigms tackle the issue of learning efficiency over massive datasets from the perspective of self-supervised learning and dataset distillation independently, while neglecting the untapped potential of accelerating representation learning from an intermediate standpoint. In this work, we delve into defining the ideal data properties from both optimization and generalization perspectives. We propose that model-generated representations, despite being trained on diverse tasks and architectures, converge to a shared linear space, facilitating effective linear transport between models. Furthermore, we demonstrate that these representations exhibit properties conducive to the formation of ideal data. The theoretical/empirical insights therein inspire us to propose a Representation Learning Accelerator (ReLA), which leverages a task- and architecture-agnostic, yet publicly available, free model to form a dynamic data subset and thus accelerate (self-)supervised learning. For instance, employing a CLIP ViT B/16 as a prior model for dynamic data generation, ReLA-aided BYOL can train a ResNet-50 from scratch with 50% of ImageNet-1K, yielding performance surpassing that of training on the full dataset. Additionally, employing a ResNet-18 pre-trained on CIFAR-10 can enhance ResNet-50 training on 10% of ImageNet-1K, resulting in a 7.7% increase in accuracy.
Abstract:Recent advancements in dataset distillation have demonstrated the significant benefits of employing soft labels generated by pre-trained teacher models. In this paper, we introduce a novel perspective by emphasizing the full utilization of labels. We first conduct a comprehensive comparison of various loss functions for soft label utilization in dataset distillation, revealing that the model trained on the synthetic dataset exhibits high sensitivity to the choice of loss function for soft label utilization. This finding highlights the necessity of a universal loss function for training models on synthetic datasets. Building on these insights, we introduce an extremely simple yet surprisingly effective plug-and-play approach, GIFT, which encompasses soft label refinement and a cosine similarity-based loss function to efficiently leverage full label information. Extensive experiments demonstrate that GIFT consistently enhances the state-of-the-art dataset distillation methods across various scales datasets without incurring additional computational costs. For instance, on ImageNet-1K with IPC = 10, GIFT improves the SOTA method RDED by 3.9% and 1.8% on ConvNet and ResNet-18, respectively. Code: https://github.com/LINs-lab/GIFT.