Abstract:Large language models (LLMs) rarely admit uncertainty, often producing fluent but misleading answers, rather than abstaining (i.e., refusing to answer). This weakness is even evident in temporal question answering, where models frequently ignore time-sensitive evidence and conflate facts across different time-periods. In this paper, we present the first empirical study of training LLMs with an abstention ability while reasoning about temporal QA. Existing approaches such as calibration might be unreliable in capturing uncertainty in complex reasoning. We instead frame abstention as a teachable skill and introduce a pipeline that couples Chain-of-Thought (CoT) supervision with Reinforcement Learning (RL) guided by abstention-aware rewards. Our goal is to systematically analyze how different information types and training techniques affect temporal reasoning with abstention behavior in LLMs. Through extensive experiments studying various methods, we find that RL yields strong empirical gains on reasoning: a model initialized by Qwen2.5-1.5B-Instruct surpasses GPT-4o by $3.46\%$ and $5.80\%$ in Exact Match on TimeQA-Easy and Hard, respectively. Moreover, it improves the True Positive rate on unanswerable questions by $20\%$ over a pure supervised fine-tuned (SFT) variant. Beyond performance, our analysis shows that SFT induces overconfidence and harms reliability, while RL improves prediction accuracy but exhibits similar risks. Finally, by comparing implicit reasoning cues (e.g., original context, temporal sub-context, knowledge graphs) with explicit CoT supervision, we find that implicit information provides limited benefit for reasoning with abstention. Our study provides new insights into how abstention and reasoning can be jointly optimized, providing a foundation for building more reliable LLMs.
Abstract:Mental health disorders represent a burgeoning global public health challenge. While Large Language Models (LLMs) have demonstrated potential in psychiatric assessment, their clinical utility is severely constrained by benchmarks that lack ecological validity and fine-grained diagnostic supervision. To bridge this gap, we introduce \textbf{MentalDx Bench}, the first benchmark dedicated to disorder-level psychiatric diagnosis within real-world clinical settings. Comprising 712 de-identified electronic health records annotated by board-certified psychiatrists under ICD-11 guidelines, the benchmark covers 76 disorders across 16 diagnostic categories. Evaluation of 18 LLMs reveals a critical \textit{paradigm misalignment}: strong performance at coarse diagnostic categorization contrasts with systematic failure at disorder-level diagnosis, underscoring a gap between pattern-based modeling and clinical hypothetico-deductive reasoning. In response, we propose \textbf{MentalSeek-Dx}, a medical-specialized LLM trained to internalize this clinical reasoning process through supervised trajectory construction and curriculum-based reinforcement learning. Experiments on MentalDx Bench demonstrate that MentalSeek-Dx achieves state-of-the-art (SOTA) performance with only 14B parameters, establishing a clinically grounded framework for reliable psychiatric diagnosis.
Abstract:We introduce Kimi K2.5, an open-source multimodal agentic model designed to advance general agentic intelligence. K2.5 emphasizes the joint optimization of text and vision so that two modalities enhance each other. This includes a series of techniques such as joint text-vision pre-training, zero-vision SFT, and joint text-vision reinforcement learning. Building on this multimodal foundation, K2.5 introduces Agent Swarm, a self-directed parallel agent orchestration framework that dynamically decomposes complex tasks into heterogeneous sub-problems and executes them concurrently. Extensive evaluations show that Kimi K2.5 achieves state-of-the-art results across various domains including coding, vision, reasoning, and agentic tasks. Agent Swarm also reduces latency by up to $4.5\times$ over single-agent baselines. We release the post-trained Kimi K2.5 model checkpoint to facilitate future research and real-world applications of agentic intelligence.
Abstract:We introduce WorldVQA, a benchmark designed to evaluate the atomic visual world knowledge of Multimodal Large Language Models (MLLMs). Unlike current evaluations, which often conflate visual knowledge retrieval with reasoning, WorldVQA decouples these capabilities to strictly measure "what the model memorizes." The benchmark assesses the atomic capability of grounding and naming visual entities across a stratified taxonomy, spanning from common head-class objects to long-tail rarities. We expect WorldVQA to serve as a rigorous test for visual factuality, thereby establishing a standard for assessing the encyclopedic breadth and hallucination rates of current and next-generation frontier models.
Abstract:Diffusion models achieve remarkable generation quality, yet face a fundamental challenge known as memorization, where generated samples can replicate training samples exactly. We develop a theoretical framework to explain this phenomenon by showing that the empirical score function (the score function corresponding to the empirical distribution) is a weighted sum of the score functions of Gaussian distributions, in which the weights are sharp softmax functions. This structure causes individual training samples to dominate the score function, resulting in sampling collapse. In practice, approximating the empirical score function with a neural network can partially alleviate this issue and improve generalization. Our theoretical framework explains why: In training, the neural network learns a smoother approximation of the weighted sum, allowing the sampling process to be influenced by local manifolds rather than single points. Leveraging this insight, we propose two novel methods to further enhance generalization: (1) Noise Unconditioning enables each training sample to adaptively determine its score function weight to increase the effect of more training samples, thereby preventing single-point dominance and mitigating collapse. (2) Temperature Smoothing introduces an explicit parameter to control the smoothness. By increasing the temperature in the softmax weights, we naturally reduce the dominance of any single training sample and mitigate memorization. Experiments across multiple datasets validate our theoretical analysis and demonstrate the effectiveness of the proposed methods in improving generalization while maintaining high generation quality.
Abstract:We present SimpleSeg, a strikingly simple yet highly effective approach to endow Multimodal Large Language Models (MLLMs) with native pixel-level perception. Our method reframes segmentation as a simple sequence generation problem: the model directly predicts sequences of points (textual coordinates) delineating object boundaries, entirely within its language space. To achieve high fidelity, we introduce a two-stage SF$\to$RL training pipeline, where Reinforcement Learning with an IoU-based reward refines the point sequences to accurately match ground-truth contours. We find that the standard MLLM architecture possesses a strong, inherent capacity for low-level perception that can be unlocked without any specialized architecture. On segmentation benchmarks, SimpleSeg achieves performance that is comparable to, and often surpasses, methods relying on complex, task-specific designs. This work lays out that precise spatial understanding can emerge from simple point prediction, challenging the prevailing need for auxiliary components and paving the way for more unified and capable VLMs. Homepage: https://simpleseg.github.io/
Abstract:Recently, with the rapid development of robot learning and imitation learning, numerous datasets and methods have emerged. However, these datasets and their task designs often lack systematic consideration and principles. This raises important questions: Do the current datasets and task designs truly advance the capabilities of robotic agents? Do evaluations on a few common tasks accurately reflect the differentiated performance of various methods proposed by different teams and evaluated on different tasks? To address these issues, we introduce the Great March 100 (\textbf{GM-100}) as the first step towards a robot learning Olympics. GM-100 consists of 100 carefully designed tasks that cover a wide range of interactions and long-tail behaviors, aiming to provide a diverse and challenging set of tasks to comprehensively evaluate the capabilities of robotic agents and promote diversity and complexity in robot dataset task designs. These tasks are developed through systematic analysis and expansion of existing task designs, combined with insights from human-object interaction primitives and object affordances. We collect a large amount of trajectory data on different robotic platforms and evaluate several baseline models. Experimental results demonstrate that the GM-100 tasks are 1) feasible to execute and 2) sufficiently challenging to effectively differentiate the performance of current VLA models. Our data and code are available at https://rhos.ai/research/gm-100.
Abstract:Multimodal Large Language Models (MLLMs) have unlocked powerful cross-modal capabilities, but still significantly suffer from hallucinations. As such, accurate detection of hallucinations in MLLMs is imperative for ensuring their reliability in practical applications. To this end, guided by the principle of "Seeing is Believing", we introduce VBackChecker, a novel reference-free hallucination detection framework that verifies the consistency of MLLMgenerated responses with visual inputs, by leveraging a pixellevel Grounding LLM equipped with reasoning and referring segmentation capabilities. This reference-free framework not only effectively handles rich-context scenarios, but also offers interpretability. To facilitate this, an innovative pipeline is accordingly designed for generating instruction-tuning data (R-Instruct), featuring rich-context descriptions, grounding masks, and hard negative samples. We further establish R^2 -HalBench, a new hallucination benchmark for MLLMs, which, unlike previous benchmarks, encompasses real-world, rich-context descriptions from 18 MLLMs with high-quality annotations, spanning diverse object-, attribute, and relationship-level details. VBackChecker outperforms prior complex frameworks and achieves state-of-the-art performance on R^2 -HalBench, even rivaling GPT-4o's capabilities in hallucination detection. It also surpasses prior methods in the pixel-level grounding task, achieving over a 10% improvement. All codes, data, and models are available at https://github.com/PinxueGuo/VBackChecker.
Abstract:This work introduces Text-based Aerial-Ground Person Retrieval (TAG-PR), which aims to retrieve person images from heterogeneous aerial and ground views with textual descriptions. Unlike traditional Text-based Person Retrieval (T-PR), which focuses solely on ground-view images, TAG-PR introduces greater practical significance and presents unique challenges due to the large viewpoint discrepancy across images. To support this task, we contribute: (1) TAG-PEDES dataset, constructed from public benchmarks with automatically generated textual descriptions, enhanced by a diversified text generation paradigm to ensure robustness under view heterogeneity; and (2) TAG-CLIP, a novel retrieval framework that addresses view heterogeneity through a hierarchically-routed mixture of experts module to learn view-specific and view-agnostic features and a viewpoint decoupling strategy to decouple view-specific features for better cross-modal alignment. We evaluate the effectiveness of TAG-CLIP on both the proposed TAG-PEDES dataset and existing T-PR benchmarks. The dataset and code are available at https://github.com/Flame-Chasers/TAG-PR.
Abstract:We introduce Kimi Linear, a hybrid linear attention architecture that, for the first time, outperforms full attention under fair comparisons across various scenarios -- including short-context, long-context, and reinforcement learning (RL) scaling regimes. At its core lies Kimi Delta Attention (KDA), an expressive linear attention module that extends Gated DeltaNet with a finer-grained gating mechanism, enabling more effective use of limited finite-state RNN memory. Our bespoke chunkwise algorithm achieves high hardware efficiency through a specialized variant of the Diagonal-Plus-Low-Rank (DPLR) transition matrices, which substantially reduces computation compared to the general DPLR formulation while remaining more consistent with the classical delta rule. We pretrain a Kimi Linear model with 3B activated parameters and 48B total parameters, based on a layerwise hybrid of KDA and Multi-Head Latent Attention (MLA). Our experiments show that with an identical training recipe, Kimi Linear outperforms full MLA with a sizeable margin across all evaluated tasks, while reducing KV cache usage by up to 75% and achieving up to 6 times decoding throughput for a 1M context. These results demonstrate that Kimi Linear can be a drop-in replacement for full attention architectures with superior performance and efficiency, including tasks with longer input and output lengths. To support further research, we open-source the KDA kernel and vLLM implementations, and release the pre-trained and instruction-tuned model checkpoints.