Abstract:Large language models (LLMs) excel at few-shot in-context learning (ICL) without requiring parameter updates. However, as the number of ICL demonstrations increases from a few to many, performance tends to plateau and eventually decline. We identify two primary causes for this trend: the suboptimal negative log-likelihood (NLL) optimization objective and the incremental data noise. To address these issues, we introduce DR-ICL, a novel optimization method that enhances model performance through Differentiated Learning and advantage-based Reweighting objectives. Globally, DR-ICL utilizes differentiated learning to optimize the NLL objective, ensuring that many-shot performance surpasses zero-shot levels. Locally, it dynamically adjusts the weighting of many-shot demonstrations by leveraging cumulative advantages inspired by reinforcement learning, thereby improving generalization. This approach allows the model to handle varying numbers of shots effectively, mitigating the impact of noisy data. Recognizing the lack of multi-task datasets with diverse many-shot distributions, we develop the Many-Shot ICL Benchmark (MICLB)-a large-scale benchmark covering shot numbers from 1 to 350 within sequences of up to 8,000 tokens-for fine-tuning purposes. MICLB facilitates the evaluation of many-shot ICL strategies across seven prominent NLP tasks and 50 distinct datasets. Experimental results demonstrate that LLMs enhanced with DR-ICL achieve significant improvements in many-shot setups across various tasks, including both in-domain and out-of-domain scenarios. We release the code and benchmark dataset hoping to facilitate further research in many-shot ICL.
Abstract:Few-shot deep learning is a topical challenge area for scaling visual recognition to open-ended growth in the space of categories to recognise. A promising line work towards realising this vision is deep networks that learn to match queries with stored training images. However, methods in this paradigm usually train a deep embedding followed by a single linear classifier. Our insight is that effective general-purpose matching requires discrimination with regards to features at multiple abstraction levels. We therefore propose a new framework termed Deep Comparison Network(DCN) that decomposes embedding learning into a sequence of modules, and pairs each with a relation module. The relation modules compute a non-linear metric to score the match using the corresponding embedding module's representation. To ensure that all embedding module's features are used, the relation modules are deeply supervised. Finally generalisation is further improved by a learned noise regulariser. The resulting network achieves state of the art performance on both miniImageNet and tieredImageNet, while retaining the appealing simplicity and efficiency of deep metric learning approaches.
Abstract:We present a conceptually simple, flexible, and general framework for few-shot learning, where a classifier must learn to recognise new classes given only few examples from each. Our method, called the Relation Network (RN), is trained end-to-end from scratch. During meta-learning, it learns to learn a deep distance metric to compare a small number of images within episodes, each of which is designed to simulate the few-shot setting. Once trained, a RN is able to classify images of new classes by computing relation scores between query images and the few examples of each new class without further updating the network. Besides providing improved performance on few-shot learning, our framework is easily extended to zero-shot learning. Extensive experiments on five benchmarks demonstrate that our simple approach provides a unified and effective approach for both of these two tasks.
Abstract:Generating natural language descriptions of images is an important capability for a robot or other visual-intelligence driven AI agent that may need to communicate with human users about what it is seeing. Such image captioning methods are typically trained by maximising the likelihood of ground-truth annotated caption given the image. While simple and easy to implement, this approach does not directly maximise the language quality metrics we care about such as CIDEr. In this paper we investigate training image captioning methods based on actor-critic reinforcement learning in order to directly optimise non-differentiable quality metrics of interest. By formulating a per-token advantage and value computation strategy in this novel reinforcement learning based captioning model, we show that it is possible to achieve the state of the art performance on the widely used MSCOCO benchmark.
Abstract:We propose a novel and flexible approach to meta-learning for learning-to-learn from only a few examples. Our framework is motivated by actor-critic reinforcement learning, but can be applied to both reinforcement and supervised learning. The key idea is to learn a meta-critic: an action-value function neural network that learns to criticise any actor trying to solve any specified task. For supervised learning, this corresponds to the novel idea of a trainable task-parametrised loss generator. This meta-critic approach provides a route to knowledge transfer that can flexibly deal with few-shot and semi-supervised conditions for both reinforcement and supervised learning. Promising results are shown on both reinforcement and supervised learning problems.