Abstract:With the growing spread of misinformation online, research has increasingly focused on detecting and tracking fake news. However, an overlooked issue is that fake news does not naturally exist in social networks -- it often originates from distorted facts or deliberate fabrication by malicious actors. Understanding how true news gradually evolves into fake news is critical for early detection and prevention, reducing its spread and impact. Hence, in this paper, we take the first step toward simulating and revealing this evolution, proposing a Fake News evolUtion Simulation framEwork (FUSE) based on large language models (LLMs). Specifically, we employ LLM as agents to represent individuals in a simulated social network. We define four types of agents commonly observed in daily interactions: spreaders, who propagate information; commentators, who provide opinions and interpretations; verifiers, who check the accuracy of information; and bystanders, who passively observe without engaging. For simulated environments, we model various social network structures, such as high-clustering networks and scale-free networks, to mirror real-world network dynamics. Each day, the agents engage in belief exchanges, reflect on their thought processes, and reintroduce the news accordingly. Given the lack of prior work in this area, we developed a FUSE-EVAL evaluation framework to measure the deviation from true news during the fake news evolution process. The results show that FUSE successfully captures the underlying patterns of how true news transforms into fake news and accurately reproduces previously discovered instances of fake news, aligning closely with human evaluations. Moreover, our work provides insights into the fact that combating fake news should not be delayed until it has fully evolved; instead, prevention in advance is key to achieving better outcomes.
Abstract:Ophthalmic image segmentation serves as a critical foundation for ocular disease diagnosis. Although fully convolutional neural networks (CNNs) are commonly employed for segmentation, they are constrained by inductive biases and face challenges in establishing long-range dependencies. Transformer-based models address these limitations but introduce substantial computational overhead. Recently, a simple yet efficient Multilayer Perceptron (MLP) architecture was proposed for image classification, achieving competitive performance relative to advanced transformers. However, its effectiveness for ophthalmic image segmentation remains unexplored. In this paper, we introduce MM-UNet, an efficient Mixed MLP model tailored for ophthalmic image segmentation. Within MM-UNet, we propose a multi-scale MLP (MMLP) module that facilitates the interaction of features at various depths through a grouping strategy, enabling simultaneous capture of global and local information. We conducted extensive experiments on both a private anterior segment optical coherence tomography (AS-OCT) image dataset and a public fundus image dataset. The results demonstrated the superiority of our MM-UNet model in comparison to state-of-the-art deep segmentation networks.
Abstract:Spatial pooling (SP) and cross-channel pooling (CCP) operators have been applied to aggregate spatial features and pixel-wise features from feature maps in deep neural networks (DNNs), respectively. Their main goal is to reduce computation and memory overhead without visibly weakening the performance of DNNs. However, SP often faces the problem of losing the subtle feature representations, while CCP has a high possibility of ignoring salient feature representations, which may lead to both miscalibration of confidence issues and suboptimal medical classification results. To address these problems, we propose a novel dual-view framework, the first to systematically investigate the relative roles of SP and CCP by analyzing the difference between spatial features and pixel-wise features. Based on this framework, we propose a new pooling method, termed dual-view pyramid pooling (DVPP), to aggregate multi-scale dual-view features. DVPP aims to boost both medical image classification and confidence calibration performance by fully leveraging the merits of SP and CCP operators from a dual-axis perspective. Additionally, we discuss how to fulfill DVPP with five parameter-free implementations. Extensive experiments on six 2D/3D medical image classification tasks show that our DVPP surpasses state-of-the-art pooling methods in terms of medical image classification results and confidence calibration across different DNNs.
Abstract:Medical image registration is vital for disease diagnosis and treatment with its ability to merge diverse information of images, which may be captured under different times, angles, or modalities. Although several surveys have reviewed the development of medical image registration, these surveys have not systematically summarized methodologies of existing medical image registration methods. To this end, we provide a comprehensive review of these methods from traditional and deep learning-based directions, aiming to help audiences understand the development of medical image registration quickly. In particular, we review recent advances in retinal image registration at the end of each section, which has not attracted much attention. Additionally, we also discuss the current challenges of retinal image registration and provide insights and prospects for future research.
Abstract:Information-seeking dialogue systems are widely used in e-commerce systems, with answers that must be tailored to fit the specific settings of the online system. Given the user query, the information-seeking dialogue systems first retrieve a subset of response candidates, then further select the best response from the candidate set through re-ranking. Current methods mainly retrieve response candidates based solely on the current query, however, incorporating similar questions could introduce more diverse content, potentially refining the representation and improving the matching process. Hence, in this paper, we proposed a Query-bag based Pseudo Relevance Feedback framework (QB-PRF), which constructs a query-bag with related queries to serve as pseudo signals to guide information-seeking conversations. Concretely, we first propose a Query-bag Selection module (QBS), which utilizes contrastive learning to train the selection of synonymous queries in an unsupervised manner by leveraging the representations learned from pre-trained VAE. Secondly, we come up with a Query-bag Fusion module (QBF) that fuses synonymous queries to enhance the semantic representation of the original query through multidimensional attention computation. We verify the effectiveness of the QB-PRF framework on two competitive pretrained backbone models, including BERT and GPT-2. Experimental results on two benchmark datasets show that our framework achieves superior performance over strong baselines.
Abstract:In the digital era, the rapid propagation of fake news and rumors via social networks brings notable societal challenges and impacts public opinion regulation. Traditional fake news modeling typically forecasts the general popularity trends of different groups or numerically represents opinions shift. However, these methods often oversimplify real-world complexities and overlook the rich semantic information of news text. The advent of large language models (LLMs) provides the possibility of modeling subtle dynamics of opinion. Consequently, in this work, we introduce a Fake news Propagation Simulation framework (FPS) based on LLM, which studies the trends and control of fake news propagation in detail. Specifically, each agent in the simulation represents an individual with a distinct personality. They are equipped with both short-term and long-term memory, as well as a reflective mechanism to mimic human-like thinking. Every day, they engage in random opinion exchanges, reflect on their thinking, and update their opinions. Our simulation results uncover patterns in fake news propagation related to topic relevance, and individual traits, aligning with real-world observations. Additionally, we evaluate various intervention strategies and demonstrate that early and appropriately frequent interventions strike a balance between governance cost and effectiveness, offering valuable insights for practical applications. Our study underscores the significant utility and potential of LLMs in combating fake news.
Abstract:The morphologies of vessel-like structures, such as blood vessels and nerve fibres, play significant roles in disease diagnosis, e.g., Parkinson's disease. Deep network-based refinement segmentation methods have recently achieved promising vessel-like structure segmentation results. There are still two challenges: (1) existing methods have limitations in rehabilitating subsection ruptures in segmented vessel-like structures; (2) they are often overconfident in predicted segmentation results. To tackle these two challenges, this paper attempts to leverage the potential of spatial interconnection relationships among subsection ruptures from the structure rehabilitation perspective. Based on this, we propose a novel Vessel-like Structure Rehabilitation Network (VSR-Net) to rehabilitate subsection ruptures and improve the model calibration based on coarse vessel-like structure segmentation results. VSR-Net first constructs subsection rupture clusters with Curvilinear Clustering Module (CCM). Then, the well-designed Curvilinear Merging Module (CMM) is applied to rehabilitate the subsection ruptures to obtain the refined vessel-like structures. Extensive experiments on five 2D/3D medical image datasets show that VSR-Net significantly outperforms state-of-the-art (SOTA) refinement segmentation methods with lower calibration error. Additionally, we provide quantitative analysis to explain the morphological difference between the rehabilitation results of VSR-Net and ground truth (GT), which is smaller than SOTA methods and GT, demonstrating that our method better rehabilitates vessel-like structures by restoring subsection ruptures.
Abstract:Referring Remote Sensing Image Segmentation (RRSIS) is a new challenge that combines computer vision and natural language processing, delineating specific regions in aerial images as described by textual queries. Traditional Referring Image Segmentation (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery, leading to suboptimal segmentation results. To address these challenges, we introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS. RMSIN incorporates an Intra-scale Interaction Module (IIM) to effectively address the fine-grained detail required at multiple scales and a Cross-scale Interaction Module (CIM) for integrating these details coherently across the network. Furthermore, RMSIN employs an Adaptive Rotated Convolution (ARC) to account for the diverse orientations of objects, a novel contribution that significantly enhances segmentation accuracy. To assess the efficacy of RMSIN, we have curated an expansive dataset comprising 17,402 image-caption-mask triplets, which is unparalleled in terms of scale and variety. This dataset not only presents the model with a wide range of spatial and rotational scenarios but also establishes a stringent benchmark for the RRSIS task, ensuring a rigorous evaluation of performance. Our experimental evaluations demonstrate the exceptional performance of RMSIN, surpassing existing state-of-the-art models by a significant margin. All datasets and code are made available at https://github.com/Lsan2401/RMSIN.
Abstract:Early-stage diabetic retinopathy (DR) presents challenges in clinical diagnosis due to inconspicuous and minute microangioma lesions, resulting in limited research in this area. Additionally, the potential of emerging foundation models, such as the segment anything model (SAM), in medical scenarios remains rarely explored. In this work, we propose a human-in-the-loop, label-free early DR diagnosis framework called GlanceSeg, based on SAM. GlanceSeg enables real-time segmentation of microangioma lesions as ophthalmologists review fundus images. Our human-in-the-loop framework integrates the ophthalmologist's gaze map, allowing for rough localization of minute lesions in fundus images. Subsequently, a saliency map is generated based on the located region of interest, which provides prompt points to assist the foundation model in efficiently segmenting microangioma lesions. Finally, a domain knowledge filter refines the segmentation of minute lesions. We conducted experiments on two newly-built public datasets, i.e., IDRiD and Retinal-Lesions, and validated the feasibility and superiority of GlanceSeg through visualized illustrations and quantitative measures. Additionally, we demonstrated that GlanceSeg improves annotation efficiency for clinicians and enhances segmentation performance through fine-tuning using annotations. This study highlights the potential of GlanceSeg-based annotations for self-model optimization, leading to enduring performance advancements through continual learning.
Abstract:Pathological myopia (PM) is the leading ocular disease for impaired vision and blindness worldwide. The key to detecting PM as early as possible is to detect informative features in global and local lesion regions, such as fundus tessellation, atrophy and maculopathy. However, applying classical convolutional neural networks (CNNs) to efficiently highlight global and local lesion context information in feature maps is quite challenging. To tackle this issue, we aim to fully leverage the potential of global and local lesion information with attention module design. Based on this, we propose an efficient pyramid channel attention (EPCA) module, which dynamically explores the relative importance of global and local lesion context information in feature maps. Then we combine the EPCA module with the backbone network to construct EPCA-Net for automatic PM detection based on fundus images. In addition, we construct a PM dataset termed PM-fundus by collecting fundus images of PM from publicly available datasets (e.g., the PALM dataset and ODIR dataset). The comprehensive experiments are conducted on three datasets, demonstrating that our EPCA-Net outperforms state-of-the-art methods in detecting PM. Furthermore, motivated by the recent pretraining-and-finetuning paradigm, we attempt to adapt pre-trained natural image models for PM detection by freezing them and treating the EPCA module and other attention modules as the adapters. The results show that our method with the pretraining-and-finetuning paradigm achieves competitive performance through comparisons to part of methods with traditional fine-tuning methods with fewer tunable parameters.