Abstract:Large language models (LLMs) have been observed to suddenly exhibit advanced reasoning abilities during reinforcement learning (RL), resembling an ``aha moment'' triggered by simple outcome-based rewards. While RL has proven effective in eliciting such breakthroughs in tasks involving mathematics, coding, and vision, it faces significant challenges in multi-scenario games. The diversity of game rules, interaction modes, and environmental complexities often leads to policies that perform well in one scenario but fail to generalize to others. Simply combining multiple scenarios during training introduces additional challenges, such as training instability and poor performance. To overcome these challenges, we propose Divide-Fuse-Conquer, a framework designed to enhance generalization in multi-scenario RL. This approach starts by heuristically grouping games based on characteristics such as rules and difficulties. Specialized models are then trained for each group to excel at games in the group is what we refer to as the divide step. Next, we fuse model parameters from different groups as a new model, and continue training it for multiple groups, until the scenarios in all groups are conquered. Experiments across 18 TextArena games show that Qwen2.5-32B-Align trained with the Divide-Fuse-Conquer strategy reaches a performance level comparable to Claude3.5, achieving 7 wins and 4 draws. We hope our approach can inspire future research on using reinforcement learning to improve the generalization of LLMs.
Abstract:Evaluating and iterating upon recommender systems is crucial, yet traditional A/B testing is resource-intensive, and offline methods struggle with dynamic user-platform interactions. While agent-based simulation is promising, existing platforms often lack a mechanism for user actions to dynamically reshape the environment. To bridge this gap, we introduce RecInter, a novel agent-based simulation platform for recommender systems featuring a robust interaction mechanism. In RecInter platform, simulated user actions (e.g., likes, reviews, purchases) dynamically update item attributes in real-time, and introduced Merchant Agents can reply, fostering a more realistic and evolving ecosystem. High-fidelity simulation is ensured through Multidimensional User Profiling module, Advanced Agent Architecture, and LLM fine-tuned on Chain-of-Thought (CoT) enriched interaction data. Our platform achieves significantly improved simulation credibility and successfully replicates emergent phenomena like Brand Loyalty and the Matthew Effect. Experiments demonstrate that this interaction mechanism is pivotal for simulating realistic system evolution, establishing our platform as a credible testbed for recommender systems research.
Abstract:The recent trend of self-sovereign Decentralized AI Agents (DeAgents) combines Large Language Model (LLM)-based AI agents with decentralization technologies such as blockchain smart contracts and trusted execution environments (TEEs). These tamper-resistant trustless substrates allow agents to achieve self-sovereignty through ownership of cryptowallet private keys and control of digital assets and social media accounts. DeAgent eliminates centralized control and reduces human intervention, addressing key trust concerns inherent in centralized AI systems. However, given ongoing challenges in LLM reliability such as hallucinations, this creates paradoxical tension between trustlessness and unreliable autonomy. This study addresses this empirical research gap through interviews with DeAgents stakeholders-experts, founders, and developers-to examine their motivations, benefits, and governance dilemmas. The findings will guide future DeAgents system and protocol design and inform discussions about governance in sociotechnical AI systems in the future agentic web.
Abstract:In today's digital environment, the rapid propagation of fake news via social networks poses significant social challenges. Most existing detection methods either employ traditional classification models, which suffer from low interpretability and limited generalization capabilities, or craft specific prompts for large language models (LLMs) to produce explanations and results directly, failing to leverage LLMs' reasoning abilities fully. Inspired by the saying that "truth becomes clearer through debate," our study introduces a novel multi-agent system with LLMs named TruEDebate (TED) to enhance the interpretability and effectiveness of fake news detection. TED employs a rigorous debate process inspired by formal debate settings. Central to our approach are two innovative components: the DebateFlow Agents and the InsightFlow Agents. The DebateFlow Agents organize agents into two teams, where one supports and the other challenges the truth of the news. These agents engage in opening statements, cross-examination, rebuttal, and closing statements, simulating a rigorous debate process akin to human discourse analysis, allowing for a thorough evaluation of news content. Concurrently, the InsightFlow Agents consist of two specialized sub-agents: the Synthesis Agent and the Analysis Agent. The Synthesis Agent summarizes the debates and provides an overarching viewpoint, ensuring a coherent and comprehensive evaluation. The Analysis Agent, which includes a role-aware encoder and a debate graph, integrates role embeddings and models the interactions between debate roles and arguments using an attention mechanism, providing the final judgment.
Abstract:The diffusion models, in early stages focus on constructing basic image structures, while the refined details, including local features and textures, are generated in later stages. Thus the same network layers are forced to learn both structural and textural information simultaneously, significantly differing from the traditional deep learning architectures (e.g., ResNet or GANs) which captures or generates the image semantic information at different layers. This difference inspires us to explore the time-wise diffusion models. We initially investigate the key contributions of the U-Net parameters to the denoising process and identify that properly zeroing out certain parameters (including large parameters) contributes to denoising, substantially improving the generation quality on the fly. Capitalizing on this discovery, we propose a simple yet effective method-termed ``MaskUNet''- that enhances generation quality with negligible parameter numbers. Our method fully leverages timestep- and sample-dependent effective U-Net parameters. To optimize MaskUNet, we offer two fine-tuning strategies: a training-based approach and a training-free approach, including tailored networks and optimization functions. In zero-shot inference on the COCO dataset, MaskUNet achieves the best FID score and further demonstrates its effectiveness in downstream task evaluations. Project page: https://gudaochangsheng.github.io/MaskUnet-Page/
Abstract:User sequence modeling is crucial for modern large-scale recommendation systems, as it enables the extraction of informative representations of users and items from their historical interactions. These user representations are widely used for a variety of downstream tasks to enhance users' online experience. A key challenge for learning these representations is the lack of labeled training data. While self-supervised learning (SSL) methods have emerged as a promising solution for learning representations from unlabeled data, many existing approaches rely on extensive negative sampling, which can be computationally expensive and may not always be feasible in real-world scenario. In this work, we propose an adaptation of Barlow Twins, a state-of-the-art SSL methods, to user sequence modeling by incorporating suitable augmentation methods. Our approach aims to mitigate the need for large negative sample batches, enabling effective representation learning with smaller batch sizes and limited labeled data. We evaluate our method on the MovieLens-1M, MovieLens-20M, and Yelp datasets, demonstrating that our method consistently outperforms the widely-used dual encoder model across three downstream tasks, achieving an 8%-20% improvement in accuracy. Our findings underscore the effectiveness of our approach in extracting valuable sequence-level information for user modeling, particularly in scenarios where labeled data is scarce and negative examples are limited.
Abstract:Vision-language models (VLMs) achieve remarkable success in single-image tasks. However, real-world scenarios often involve intricate multi-image inputs, leading to a notable performance decline as models struggle to disentangle critical information scattered across complex visual features. In this work, we propose Focus-Centric Visual Chain, a novel paradigm that enhances VLMs'perception, comprehension, and reasoning abilities in multi-image scenarios. To facilitate this paradigm, we propose Focus-Centric Data Synthesis, a scalable bottom-up approach for synthesizing high-quality data with elaborate reasoning paths. Through this approach, We construct VISC-150K, a large-scale dataset with reasoning data in the form of Focus-Centric Visual Chain, specifically designed for multi-image tasks. Experimental results on seven multi-image benchmarks demonstrate that our method achieves average performance gains of 3.16% and 2.24% across two distinct model architectures, without compromising the general vision-language capabilities. our study represents a significant step toward more robust and capable vision-language systems that can handle complex visual scenarios.
Abstract:Wood defect detection is critical for ensuring quality control in the wood processing industry. However, current industrial applications face two major challenges: traditional methods are costly, subjective, and labor-intensive, while mainstream deep learning models often struggle to balance detection accuracy and computational efficiency for edge deployment. To address these issues, this study proposes CFIS-YOLO, a lightweight object detection model optimized for edge devices. The model introduces an enhanced C2f structure, a dynamic feature recombination module, and a novel loss function that incorporates auxiliary bounding boxes and angular constraints. These innovations improve multi-scale feature fusion and small object localization while significantly reducing computational overhead. Evaluated on a public wood defect dataset, CFIS-YOLO achieves a mean Average Precision (mAP@0.5) of 77.5\%, outperforming the baseline YOLOv10s by 4 percentage points. On SOPHON BM1684X edge devices, CFIS-YOLO delivers 135 FPS, reduces power consumption to 17.3\% of the original implementation, and incurs only a 0.5 percentage point drop in mAP. These results demonstrate that CFIS-YOLO is a practical and effective solution for real-world wood defect detection in resource-constrained environments.
Abstract:Cross-Domain Few-Shot Object Detection (CD-FSOD) poses significant challenges to existing object detection and few-shot detection models when applied across domains. In conjunction with NTIRE 2025, we organized the 1st CD-FSOD Challenge, aiming to advance the performance of current object detectors on entirely novel target domains with only limited labeled data. The challenge attracted 152 registered participants, received submissions from 42 teams, and concluded with 13 teams making valid final submissions. Participants approached the task from diverse perspectives, proposing novel models that achieved new state-of-the-art (SOTA) results under both open-source and closed-source settings. In this report, we present an overview of the 1st NTIRE 2025 CD-FSOD Challenge, highlighting the proposed solutions and summarizing the results submitted by the participants.
Abstract:The rise of LLM-driven AI characters raises safety concerns, particularly for vulnerable human users with psychological disorders. To address these risks, we propose EmoAgent, a multi-agent AI framework designed to evaluate and mitigate mental health hazards in human-AI interactions. EmoAgent comprises two components: EmoEval simulates virtual users, including those portraying mentally vulnerable individuals, to assess mental health changes before and after interactions with AI characters. It uses clinically proven psychological and psychiatric assessment tools (PHQ-9, PDI, PANSS) to evaluate mental risks induced by LLM. EmoGuard serves as an intermediary, monitoring users' mental status, predicting potential harm, and providing corrective feedback to mitigate risks. Experiments conducted in popular character-based chatbots show that emotionally engaging dialogues can lead to psychological deterioration in vulnerable users, with mental state deterioration in more than 34.4% of the simulations. EmoGuard significantly reduces these deterioration rates, underscoring its role in ensuring safer AI-human interactions. Our code is available at: https://github.com/1akaman/EmoAgent