Abstract:In multi-agent systems utilizing Large Language Models (LLMs), communication between agents traditionally relies on natural language. This communication often includes the full context of the query so far, which can introduce significant prefill-phase latency, especially with long contexts. We introduce DroidSpeak, a novel framework to target this cross-LLM communication by leveraging the reuse of intermediate data, such as input embeddings (E-cache) and key-value caches (KV-cache). We efficiently bypass the need to reprocess entire contexts for fine-tuned versions of the same foundational model. This approach allows faster context integration while maintaining the quality of task performance. Experimental evaluations demonstrate DroidSpeak's ability to significantly accelerate inter-agent communication, achieving up to a 2.78x speedup in prefill latency with negligible loss in accuracy. Our findings underscore the potential to create more efficient and scalable multi-agent systems.
Abstract:With the growing spread of misinformation online, research has increasingly focused on detecting and tracking fake news. However, an overlooked issue is that fake news does not naturally exist in social networks -- it often originates from distorted facts or deliberate fabrication by malicious actors. Understanding how true news gradually evolves into fake news is critical for early detection and prevention, reducing its spread and impact. Hence, in this paper, we take the first step toward simulating and revealing this evolution, proposing a Fake News evolUtion Simulation framEwork (FUSE) based on large language models (LLMs). Specifically, we employ LLM as agents to represent individuals in a simulated social network. We define four types of agents commonly observed in daily interactions: spreaders, who propagate information; commentators, who provide opinions and interpretations; verifiers, who check the accuracy of information; and bystanders, who passively observe without engaging. For simulated environments, we model various social network structures, such as high-clustering networks and scale-free networks, to mirror real-world network dynamics. Each day, the agents engage in belief exchanges, reflect on their thought processes, and reintroduce the news accordingly. Given the lack of prior work in this area, we developed a FUSE-EVAL evaluation framework to measure the deviation from true news during the fake news evolution process. The results show that FUSE successfully captures the underlying patterns of how true news transforms into fake news and accurately reproduces previously discovered instances of fake news, aligning closely with human evaluations. Moreover, our work provides insights into the fact that combating fake news should not be delayed until it has fully evolved; instead, prevention in advance is key to achieving better outcomes.
Abstract:Autoregressive models have demonstrated remarkable success in natural language processing. In this work, we design a simple yet effective autoregressive architecture for robotic manipulation tasks. We propose the Chunking Causal Transformer (CCT), which extends the next-single-token prediction of causal transformers to support multi-token prediction in a single pass. Further, we design a novel attention interleaving strategy that allows CCT to be trained efficiently with teacher-forcing. Based on CCT, we propose the Autoregressive Policy (ARP) model, which learns to generate action sequences autoregressively. We find that action sequence learning enables better leverage of the underlying causal relationships in robotic tasks. We evaluate ARP across diverse robotic manipulation environments, including Push-T, ALOHA, and RLBench, and show that it outperforms the state-of-the-art methods in all tested environments, while being more efficient in computation and parameter sizes. Video demonstrations, our source code, and the models of ARP can be found at http://github.com/mlzxy/arp.
Abstract:In response to the increasing mental health challenges faced by college students, we sought to understand their perspectives on how AI applications, particularly Large Language Models (LLMs), can be leveraged to enhance their mental well-being. Through pilot interviews with ten diverse students, we explored their opinions on the use of LLMs across five fictional scenarios: General Information Inquiry, Initial Screening, Reshaping Patient-Expert Dynamics, Long-term Care, and Follow-up Care. Our findings revealed that students' acceptance of LLMs varied by scenario, with participants highlighting both potential benefits, such as proactive engagement and personalized follow-up care, and concerns, including limitations in training data and emotional support. These insights inform how AI technology should be designed and implemented to effectively support and enhance students' mental well-being, particularly in scenarios where LLMs can complement traditional methods, while maintaining empathy and respecting individual preferences.
Abstract:We propose an optimization technique for 3-D underwater object modeling from 2-D forward-scan sonar images at known poses. A key contribution, for objects imaged in the proximity of the sea surface, is to resolve the multipath artifacts due to the air-water interface. Here, the object image formed by the direct target backscatter is almost always corrupted by the ghost and sometimes by the mirror components (generated by the multipath propagation). Assuming a planar air-water interface, we model, localize, and discard the corrupted object region within each view, thus avoiding the distortion of recovered 3-D shape. Additionally, complementary visual cues from the boundary of the mirror component, distinct at suitable sonar poses, are employed to enhance the 3-D modeling accuracy. The optimization is implemented as iterative shape adjustment by displacing the vertices of triangular patches in the 3-D surface mesh model, in order to minimize the discrepancy between the data and synthesized views of the 3-D object model. To this end, we first determine 2-D motion fields that align the object regions in the data and synthesized views, then calculate the 3-D motion of triangular patch centers, and finally the model vertices. The 3-D model is initialized with the solution of an earlier space carving method applied to the same data. The same parameters are applied in various experiments with 2 real data sets, mixed real-synthetic data set, and computer-generated data guided by general findings from a real experiment, to explore the impact of non-flat air-water interface. The results confirm the generation of a refined 3-D model in about half-dozen iterations.
Abstract:Solving storage problem: where objects must be accurately placed into containers with precise orientations and positions, presents a distinct challenge that extends beyond traditional rearrangement tasks. These challenges are primarily due to the need for fine-grained 6D manipulation and the inherent multi-modality of solution spaces, where multiple viable goal configurations exist for the same storage container. We present a novel Diffusion-based Affordance Prediction (DAP) pipeline for the multi-modal object storage problem. DAP leverages a two-step approach, initially identifying a placeable region on the container and then precisely computing the relative pose between the object and that region. Existing methods either struggle with multi-modality issues or computation-intensive training. Our experiments demonstrate DAP's superior performance and training efficiency over the current state-of-the-art RPDiff, achieving remarkable results on the RPDiff benchmark. Additionally, our experiments showcase DAP's data efficiency in real-world applications, an advancement over existing simulation-driven approaches. Our contribution fills a gap in robotic manipulation research by offering a solution that is both computationally efficient and capable of handling real-world variability. Code and supplementary material can be found at: https://github.com/changhaonan/DPS.git.
Abstract:The Sparse Vector Technique (SVT) is one of the most fundamental tools in differential privacy (DP). It works as a backbone for adaptive data analysis by answering a sequence of queries on a given dataset, and gleaning useful information in a privacy-preserving manner. Unlike the typical private query releases that directly publicize the noisy query results, SVT is less informative -- it keeps the noisy query results to itself and only reveals a binary bit for each query, indicating whether the query result surpasses a predefined threshold. To provide a rigorous DP guarantee for SVT, prior works in the literature adopt a conservative privacy analysis by assuming the direct disclosure of noisy query results as in typical private query releases. This approach, however, hinders SVT from achieving higher query accuracy due to an overestimation of the privacy risks, which further leads to an excessive noise injection using the Laplacian or Gaussian noise for perturbation. Motivated by this, we provide a new privacy analysis for SVT by considering its less informative nature. Our analysis results not only broaden the range of applicable noise types for perturbation in SVT, but also identify the exponential noise as optimal among all evaluated noises (which, however, is usually deemed non-applicable in prior works). The main challenge in applying exponential noise to SVT is mitigating the sub-optimal performance due to the bias introduced by noise distributions. To address this, we develop a utility-oriented optimal threshold correction method and an appending strategy, which enhances the performance of SVT by increasing the precision and recall, respectively. The effectiveness of our proposed methods is substantiated both theoretically and empirically, demonstrating significant improvements up to $50\%$ across evaluated metrics.
Abstract:Homography estimation is the task of determining the transformation from an image pair. Our approach focuses on employing detector-free feature matching methods to address this issue. Previous work has underscored the importance of incorporating semantic information, however there still lacks an efficient way to utilize semantic information. Previous methods suffer from treating the semantics as a pre-processing, causing the utilization of semantics overly coarse-grained and lack adaptability when dealing with different tasks. In our work, we seek another way to use the semantic information, that is semantic-aware feature representation learning framework.Based on this, we propose SRMatcher, a new detector-free feature matching method, which encourages the network to learn integrated semantic feature representation.Specifically, to capture precise and rich semantics, we leverage the capabilities of recently popularized vision foundation models (VFMs) trained on extensive datasets. Then, a cross-images Semantic-aware Fusion Block (SFB) is proposed to integrate its fine-grained semantic features into the feature representation space. In this way, by reducing errors stemming from semantic inconsistencies in matching pairs, our proposed SRMatcher is able to deliver more accurate and realistic outcomes. Extensive experiments show that SRMatcher surpasses solid baselines and attains SOTA results on multiple real-world datasets. Compared to the previous SOTA approach GeoFormer, SRMatcher increases the area under the cumulative curve (AUC) by about 11\% on HPatches. Additionally, the SRMatcher could serve as a plug-and-play framework for other matching methods like LoFTR, yielding substantial precision improvement.
Abstract:Scanning electron microscopy (SEM) has been widely utilized in the field of materials science due to its significant advantages, such as large depth of field, wide field of view, and excellent stereoscopic imaging. However, at high magnification, the limited imaging range in SEM cannot cover all the possible inhomogeneous microstructures. In this research, we propose a novel approach for generating high-resolution SEM images across multiple scales, enabling a single image to capture physical dimensions at the centimeter level while preserving submicron-level details. We adopted the SEM imaging on the AlCoCrFeNi2.1 eutectic high entropy alloy (EHEA) as an example. SEM videos and image stitching are combined to fulfill this goal, and the video-extracted low-definition (LD) images are clarified by a well-trained denoising model. Furthermore, we segment the macroscopic image of the EHEA, and area of various microstructures are distinguished. Combining the segmentation results and hardness experiments, we found that the hardness is positively correlated with the content of body-centered cubic (BCC) phase, negatively correlated with the lamella width, and the relationship with the proportion of lamellar structures was not significant. Our work provides a feasible solution to generate macroscopic images based on SEMs for further analysis of the correlations between the microstructures and spatial distribution, and can be widely applied to other types of microscope.
Abstract:While existing alignment paradigms have been integral in developing large language models (LLMs), LLMs often learn an averaged human preference and struggle to model diverse preferences across cultures, demographics, and communities. We propose Modular Pluralism, a modular framework based on multi-LLM collaboration for pluralistic alignment: it "plugs into" a base LLM a pool of smaller but specialized community LMs, where models collaborate in distinct modes to flexibility support three modes of pluralism: Overton, steerable, and distributional. Modular Pluralism is uniquely compatible with black-box LLMs and offers the modular control of adding new community LMs for previously underrepresented communities. We evaluate Modular Pluralism with six tasks and four datasets featuring questions/instructions with value-laden and perspective-informed responses. Extensive experiments demonstrate that Modular Pluralism advances the three pluralism objectives across six black-box and open-source LLMs. Further analysis reveals that LLMs are generally faithful to the inputs from smaller community LLMs, allowing seamless patching by adding a new community LM to better cover previously underrepresented communities.