Abstract:The particle filter (PF) and the ensemble Kalman filter (EnKF) are widely used for approximate inference in state-space models. From a Bayesian perspective, these algorithms represent the prior by an ensemble of particles and update it to the posterior with new observations over time. However, the PF often suffers from weight degeneracy in high-dimensional settings, whereas the EnKF relies on linear Gaussian assumptions that can introduce significant approximation errors. In this paper, we propose the Adversarial Transform Particle Filter (ATPF), a novel filtering framework that combines the strengths of the PF and the EnKF through adversarial learning. Specifically, importance sampling is used to ensure statistical consistency as in the PF, while adversarially learned transformations, such as neural networks, allow accurate posterior matching for nonlinear and non-Gaussian systems. In addition, we incorporate kernel methods to ease optimization and leverage regularization techniques based on optimal transport for better statistical properties and numerical stability. We provide theoretical guarantees, including generalization bounds for both the analysis and forecast steps of ATPF. Extensive experiments across various nonlinear and non-Gaussian scenarios demonstrate the effectiveness and practical advantages of our method.
Abstract:Ageing structures require periodic inspections to identify structural defects. Previous work has used geometric distortions to locate cracks in synthetic masonry bridge point clouds but has struggled to detect small cracks. To address this limitation, this study proposes a novel 3D multimodal feature, 3DMulti-FPFHI, that combines a customized Fast Point Feature Histogram (FPFH) with an intensity feature. This feature is integrated into the PatchCore anomaly detection algorithm and evaluated through statistical and parametric analyses. The method is further evaluated using point clouds of a real masonry arch bridge and a full-scale experimental model of a concrete tunnel. Results show that the 3D intensity feature enhances inspection quality by improving crack detection; it also enables the identification of water ingress which introduces intensity anomalies. The 3DMulti-FPFHI outperforms FPFH and a state-of-the-art multimodal anomaly detection method. The potential of the method to address diverse infrastructure anomaly detection scenarios is highlighted by the minimal requirements for data compared to learning-based methods. The code and related point cloud dataset are available at https://github.com/Jingyixiong/3D-Multi-FPFHI.
Abstract:The rapid advancement of large language models (LLMs) has opened new possibilities for their adoption as evaluative judges. This paper introduces Themis, a fine-tuned LLM judge that delivers sophisticated context-aware evaluations. We provide a comprehensive overview of the development pipeline for Themis, highlighting its scenario-dependent evaluation prompts and two novel methods for controlled instruction generation. These designs enable Themis to effectively distill evaluative skills from teacher models, while retaining flexibility for continuous development. We introduce two human-labeled benchmarks for meta-evaluation, demonstrating that Themis can achieve high alignment with human preferences in an economical manner. Additionally, we explore insights into the LLM-as-a-judge paradigm, revealing nuances in performance and the varied effects of reference answers. Notably, we observe that pure knowledge distillation from strong LLMs, though common, does not guarantee performance improvement through scaling. We propose a mitigation strategy based on instruction-following difficulty. Furthermore, we provide practical guidelines covering data balancing, prompt customization, multi-objective training, and metric aggregation. We aim for our method and findings, along with the fine-tuning data, benchmarks, and model checkpoints, to support future research and development in this area.
Abstract:As a specialized branch of deep learning, Learning to Optimize (L2O) tackles optimization problems by training DNN-based solvers. Despite achieving significant success in various scenarios, such as faster convergence in solving convex optimizations and improved optimality in addressing non-convex cases, there remains a deficiency in theoretical support. Current research heavily relies on stringent assumptions that do not align with the intricacies of the training process. To address this gap, our study aims to establish L2O's convergence through its training methodology. We demonstrate that learning an algorithm's hyperparameters significantly enhances its convergence. Focusing on the gradient descent (GD) algorithm for quadratic programming, we prove the convergence of L2O's training using the neural tangent kernel theory. Moreover, we conduct empirical evaluations using synthetic datasets. Our findings indicate exceeding 50\% outperformance over the GD methods.
Abstract:Delivering superior search services is crucial for enhancing customer experience and driving revenue growth. Conventionally, search systems model user behaviors by combining user preference and query item relevance statically, often through a fixed logical 'and' relationship. This paper reexamines existing approaches through a unified lens using both causal graphs and Venn diagrams, uncovering two prevalent yet significant issues: entangled preference and relevance effects, and a collapsed modeling space. To surmount these challenges, our research introduces a novel framework, DRP, which enhances search accuracy through two components to reconstruct the behavior modeling space. Specifically, we implement preference editing to proactively remove the relevance effect from preference predictions, yielding untainted user preferences. Additionally, we employ adaptive fusion, which dynamically adjusts fusion criteria to align with the varying patterns of relevance and preference, facilitating more nuanced and tailored behavior predictions within the reconstructed modeling space. Empirical validation on two public datasets and a proprietary search dataset underscores the superiority of our proposed methodology, demonstrating marked improvements in performance over existing approaches.
Abstract:Early-warning signals of delicate design are always used to predict critical transitions in complex systems, which makes it possible to render the systems far away from the catastrophic state by introducing timely interventions. Traditional signals including the dynamical network biomarker (DNB), based on statistical properties such as variance and autocorrelation of nodal dynamics, overlook directional interactions and thus have limitations in capturing underlying mechanisms and simultaneously sustaining robustness against noise perturbations. This paper therefore introduces a framework of causal network markers (CNMs) by incorporating causality indicators, which reflect the directional influence between variables. Actually, to detect and identify the tipping points ahead of critical transition, two markers are designed: CNM-GC for linear causality and CNM-TE for non-linear causality, as well as a functional representation of different causality indicators and a clustering technique to verify the system's dominant group. Through demonstrations using benchmark models and real-world datasets of epileptic seizure, the framework of CNMs shows higher predictive power and accuracy than the traditional DNB indicator. It is believed that, due to the versatility and scalability, the CNMs are suitable for comprehensively evaluating the systems. The most possible direction for application includes the identification of tipping points in clinical disease.
Abstract:Large language models (LLMs), endowed with exceptional reasoning capabilities, are adept at discerning profound user interests from historical behaviors, thereby presenting a promising avenue for the advancement of recommendation systems. However, a notable discrepancy persists between the sparse collaborative semantics typically found in recommendation systems and the dense token representations within LLMs. In our study, we propose a novel framework that harmoniously merges traditional recommendation models with the prowess of LLMs. We initiate this integration by transforming ItemIDs into sequences that align semantically with the LLMs space, through the proposed Alignment Tokenization module. Additionally, we design a series of specialized supervised learning tasks aimed at aligning collaborative signals with the subtleties of natural language semantics. To ensure practical applicability, we optimize online inference by pre-caching the top-K results for each user, reducing latency and improving effciency. Extensive experimental evidence indicates that our model markedly improves recall metrics and displays remarkable scalability of recommendation systems.
Abstract:Enabling Large Language Models (LLMs) to understand the 3D physical world is an emerging yet challenging research direction. Current strategies for processing point clouds typically downsample the scene or divide it into smaller parts for separate analysis. However, both approaches risk losing key local details or global contextual information. In this paper, we introduce PerLA, a 3D language assistant designed to be more perceptive to both details and context, making visual representations more informative for the LLM. PerLA captures high-resolution (local) details in parallel from different point cloud areas and integrates them with (global) context obtained from a lower-resolution whole point cloud. We present a novel algorithm that preserves point cloud locality through the Hilbert curve and effectively aggregates local-to-global information via cross-attention and a graph neural network. Lastly, we introduce a novel loss for local representation consensus to promote training stability. PerLA outperforms state-of-the-art 3D language assistants, with gains of up to +1.34 CiDEr on ScanQA for question answering, and +4.22 on ScanRefer and +3.88 on Nr3D for dense captioning.\url{https://gfmei.github.io/PerLA/}
Abstract:Tuning effective step sizes is crucial for the stability and efficiency of optimization algorithms. While adaptive coordinate-wise step sizes tuning methods have been explored in first-order methods, second-order methods still lack efficient techniques. Current approaches, including hypergradient descent and cutting plane methods, offer limited improvements or encounter difficulties in second-order contexts. To address these challenges, we introduce a novel Learning-to-Optimize (L2O) model within the Broyden-Fletcher-Goldfarb-Shanno (BFGS) framework, which leverages neural networks to predict optimal coordinate-wise step sizes. Our model integrates a theoretical foundation that establishes conditions for the stability and convergence of these step sizes. Extensive experiments demonstrate that our approach achieves substantial improvements over traditional backtracking line search and hypergradient descent-based methods, offering up to 7$\times$ faster and stable performance across diverse optimization tasks.
Abstract:Vision-Language Models (VLMs) have shown remarkable capabilities across diverse visual tasks, including image recognition, video understanding, and Visual Question Answering (VQA) when explicitly trained for these tasks. Despite these advances, we find that current VLMs lack a fundamental cognitive ability: learning to localize objects in a scene by taking into account the context. In this work, we focus on the task of few-shot personalized localization, where a model is given a small set of annotated images (in-context examples) -- each with a category label and bounding box -- and is tasked with localizing the same object type in a query image. To provoke personalized localization abilities in models, we present a data-centric solution that fine-tunes them using carefully curated data from video object tracking datasets. By leveraging sequences of frames tracking the same object across multiple shots, we simulate instruction-tuning dialogues that promote context awareness. To reinforce this, we introduce a novel regularization technique that replaces object labels with pseudo-names, ensuring the model relies on visual context rather than prior knowledge. Our method significantly enhances few-shot localization performance without sacrificing generalization, as demonstrated on several benchmarks tailored to personalized localization. This work is the first to explore and benchmark personalized few-shot localization for VLMs, laying a foundation for future research in context-driven vision-language applications. The code for our project is available at https://github.com/SivanDoveh/IPLoc