Abstract:Diffusion models have recently demonstrated considerable advancement in the generation and reconstruction of magnetic resonance imaging (MRI) data. These models exhibit great potential in handling unsampled data and reducing noise, highlighting their promise as generative models. However, their application in dynamic MRI remains relatively underexplored. This is primarily due to the substantial amount of fully-sampled data typically required for training, which is difficult to obtain in dynamic MRI due to its spatio-temporal complexity and high acquisition costs. To address this challenge, we propose a dynamic MRI reconstruction method based on a time-interleaved acquisition scheme, termed the Glob-al-to-local Diffusion Model. Specifically, fully encoded full-resolution reference data are constructed by merging under-sampled k-space data from adjacent time frames, generating two distinct bulk training datasets for global and local models. The global-to-local diffusion framework alternately optimizes global information and local image details, enabling zero-shot reconstruction. Extensive experiments demonstrate that the proposed method performs well in terms of noise reduction and detail preservation, achieving reconstruction quality comparable to that of supervised approaches.
Abstract:Diffusion model-based approaches recently achieved re-markable success in MRI reconstruction, but integration into clinical routine remains challenging due to its time-consuming convergence. This phenomenon is partic-ularly notable when directly apply conventional diffusion process to k-space data without considering the inherent properties of k-space sampling, limiting k-space learning efficiency and image reconstruction quality. To tackle these challenges, we introduce subspace diffusion model with orthogonal decomposition, a method (referred to as Sub-DM) that restrict the diffusion process via projections onto subspace as the k-space data distribution evolves toward noise. Particularly, the subspace diffusion model circumvents the inference challenges posed by the com-plex and high-dimensional characteristics of k-space data, so the highly compact subspace ensures that diffusion process requires only a few simple iterations to produce accurate prior information. Furthermore, the orthogonal decomposition strategy based on wavelet transform hin-ders the information loss during the migration of the vanilla diffusion process to the subspace. Considering the strate-gy is approximately reversible, such that the entire pro-cess can be reversed. As a result, it allows the diffusion processes in different spaces to refine models through a mutual feedback mechanism, enabling the learning of ac-curate prior even when dealing with complex k-space data. Comprehensive experiments on different datasets clearly demonstrate that the superiority of Sub-DM against state of-the-art methods in terms of reconstruction speed and quality.
Abstract:This paper describes the USTC-KXDIGIT system submitted to the ASVspoof5 Challenge for Track 1 (speech deepfake detection) and Track 2 (spoofing-robust automatic speaker verification, SASV). Track 1 showcases a diverse range of technical qualities from potential processing algorithms and includes both open and closed conditions. For these conditions, our system consists of a cascade of a frontend feature extractor and a back-end classifier. We focus on extensive embedding engineering and enhancing the generalization of the back-end classifier model. Specifically, the embedding engineering is based on hand-crafted features and speech representations from a self-supervised model, used for closed and open conditions, respectively. To detect spoof attacks under various adversarial conditions, we trained multiple systems on an augmented training set. Additionally, we used voice conversion technology to synthesize fake audio from genuine audio in the training set to enrich the synthesis algorithms. To leverage the complementary information learned by different model architectures, we employed activation ensemble and fused scores from different systems to obtain the final decision score for spoof detection. During the evaluation phase, the proposed methods achieved 0.3948 minDCF and 14.33% EER in the close condition, and 0.0750 minDCF and 2.59% EER in the open condition, demonstrating the robustness of our submitted systems under adversarial conditions. In Track 2, we continued using the CM system from Track 1 and fused it with a CNN-based ASV system. This approach achieved 0.2814 min-aDCF in the closed condition and 0.0756 min-aDCF in the open condition, showcasing superior performance in the SASV system.
Abstract:The emergence of Large Language Models (LLMs) has necessitated the adoption of parallel training techniques, involving the deployment of thousands of GPUs to train a single model. Unfortunately, we have found that the efficiency of current parallel training is often suboptimal, largely due to the following two main issues. Firstly, hardware failures are inevitable, leading to interruptions in the training tasks. The inability to quickly identify the faulty components results in a substantial waste of GPU resources. Secondly, since GPUs must wait for parameter synchronization to complete before proceeding to the next round of computation, network congestions can greatly increase the waiting time for GPUs. To address these challenges, this paper introduces a communication-driven solution, namely the C4. The key insights of C4 are two folds. First, in parallel training, collective communication exhibits periodic and homogeneous characteristics, so any anomalies are certainly due to some form of hardware malfunction. By leveraging this feature, C4 can rapidly identify the faulty components, swiftly isolate the anomaly, and restart the task, thereby avoiding resource wastage caused by delays in anomaly detection. Second, the predictable communication model of collective communication, involving few large flows, allows C4 to efficiently execute traffic planning, substantially reducing network congestion. C4 has been extensively implemented across our production systems, cutting error-induced overhead by roughly 30% and enhancing runtime performance by about 15% for certain applications with moderate communication costs.
Abstract:Attenuation correction (AC) is essential for the generation of artifact-free and quantitatively accurate positron emission tomography (PET) images. However, AC of PET faces challenges including inter-scan motion and erroneous transformation of structural voxel-intensities to PET attenuation-correction factors. Nowadays, the problem of AC for quantitative PET have been solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT). Meanwhile, considering the feasibility of a deep learning approach for PET AC without anatomical imaging, this paper develops a PET AC method, which uses deep learning to generate continuously valued CT images from non-attenuation corrected PET images for AC on brain PET imaging. Specifically, an invertible network combined with the variable augmentation strategy that can achieve the bidirectional inference processes is proposed for synthetic CT generation (IVNAC). To evaluate the performance of the proposed algorithm, we conducted a comprehensive study on a total of 1440 data from 37 clinical patients using comparative algorithms (such as Cycle-GAN and Pix2pix). Perceptual analysis and quantitative evaluations illustrate that the invertible network for PET AC outperforms other existing AC models, which demonstrates the potential of the proposed method and the feasibility of achieving brain PET AC without CT.
Abstract:Most existing MRI reconstruction methods perform tar-geted reconstruction of the entire MR image without tak-ing specific tissue regions into consideration. This may fail to emphasize the reconstruction accuracy on im-portant tissues for diagnosis. In this study, leveraging a combination of the properties of k-space data and the diffusion process, our novel scheme focuses on mining the multi-frequency prior with different strategies to pre-serve fine texture details in the reconstructed image. In addition, a diffusion process can converge more quickly if its target distribution closely resembles the noise distri-bution in the process. This can be accomplished through various high-frequency prior extractors. The finding further solidifies the effectiveness of the score-based gen-erative model. On top of all the advantages, our method improves the accuracy of MRI reconstruction and accel-erates sampling process. Experimental results verify that the proposed method successfully obtains more accurate reconstruction and outperforms state-of-the-art methods.
Abstract:Human activity recognition (HAR) is one of the core research themes in ubiquitous and wearable computing. With the shift to deep learning (DL) based analysis approaches, it has become possible to extract high-level features and perform classification in an end-to-end manner. Despite their promising overall capabilities, DL-based HAR may suffer from overfitting due to the notoriously small, often inadequate, amounts of labeled sample data that are available for typical HAR applications. In response to such challenges, we propose ConvBoost -- a novel, three-layer, structured model architecture and boosting framework for convolutional network based HAR. Our framework generates additional training data from three different perspectives for improved HAR, aiming to alleviate the shortness of labeled training data in the field. Specifically, with the introduction of three conceptual layers--Sampling Layer, Data Augmentation Layer, and Resilient Layer -- we develop three "boosters" -- R-Frame, Mix-up, and C-Drop -- to enrich the per-epoch training data by dense-sampling, synthesizing, and simulating, respectively. These new conceptual layers and boosters, that are universally applicable for any kind of convolutional network, have been designed based on the characteristics of the sensor data and the concept of frame-wise HAR. In our experimental evaluation on three standard benchmarks (Opportunity, PAMAP2, GOTOV) we demonstrate the effectiveness of our ConvBoost framework for HAR applications based on variants of convolutional networks: vanilla CNN, ConvLSTM, and Attention Models. We achieved substantial performance gains for all of them, which suggests that the proposed approach is generic and can serve as a practical solution for boosting the performance of existing ConvNet-based HAR models. This is an open-source project, and the code can be found at https://github.com/sshao2013/ConvBoost
Abstract:Human Activity Recognition (HAR) is one of the core research areas in mobile and wearable computing. With the application of deep learning (DL) techniques such as CNN, recognizing periodic or static activities (e.g, walking, lying, cycling, etc.) has become a well studied problem. What remains a major challenge though is the sporadic activity recognition (SAR) problem, where activities of interest tend to be non periodic, and occur less frequently when compared with the often large amount of irrelevant background activities. Recent works suggested that sequential DL models (such as LSTMs) have great potential for modeling nonperiodic behaviours, and in this paper we studied some LSTM training strategies for SAR. Specifically, we proposed two simple yet effective LSTM variants, namely delay model and inverse model, for two SAR scenarios (with and without time critical requirement). For time critical SAR, the delay model can effectively exploit predefined delay intervals (within tolerance) in form of contextual information for improved performance. For regular SAR task, the second proposed, inverse model can learn patterns from the time series in an inverse manner, which can be complementary to the forward model (i.e.,LSTM), and combining both can boost the performance. These two LSTM variants are very practical, and they can be deemed as training strategies without alteration of the LSTM fundamentals. We also studied some additional LSTM training strategies, which can further improve the accuracy. We evaluated our models on two SAR and one non-SAR datasets, and the promising results demonstrated the effectiveness of our approaches in HAR applications.
Abstract:Dynamic magnetic resonance image reconstruction from incomplete k-space data has generated great research interest due to its capability to reduce scan time. Never-theless, the reconstruction problem is still challenging due to its ill-posed nature. Recently, diffusion models espe-cially score-based generative models have exhibited great potential in algorithm robustness and usage flexi-bility. Moreover, the unified framework through the variance exploding stochastic differential equation (VE-SDE) is proposed to enable new sampling methods and further extend the capabilities of score-based gener-ative models. Therefore, by taking advantage of the uni-fied framework, we proposed a k-space and image Du-al-Domain collaborative Universal Generative Model (DD-UGM) which combines the score-based prior with low-rank regularization penalty to reconstruct highly under-sampled measurements. More precisely, we extract prior components from both image and k-space domains via a universal generative model and adaptively handle these prior components for faster processing while maintaining good generation quality. Experimental comparisons demonstrated the noise reduction and detail preservation abilities of the proposed method. Much more than that, DD-UGM can reconstruct data of differ-ent frames by only training a single frame image, which reflects the flexibility of the proposed model.
Abstract:In this paper, we study the problem of one-shot skeleton-based action recognition, which poses unique challenges in learning transferable representation from base classes to novel classes, particularly for fine-grained actions. Existing meta-learning frameworks typically rely on the body-level representations in spatial dimension, which limits the generalisation to capture subtle visual differences in the fine-grained label space. To overcome the above limitation, we propose a part-aware prototypical representation for one-shot skeleton-based action recognition. Our method captures skeleton motion patterns at two distinctive spatial levels, one for global contexts among all body joints, referred to as body level, and the other attends to local spatial regions of body parts, referred to as the part level. We also devise a class-agnostic attention mechanism to highlight important parts for each action class. Specifically, we develop a part-aware prototypical graph network consisting of three modules: a cascaded embedding module for our dual-level modelling, an attention-based part fusion module to fuse parts and generate part-aware prototypes, and a matching module to perform classification with the part-aware representations. We demonstrate the effectiveness of our method on two public skeleton-based action recognition datasets: NTU RGB+D 120 and NW-UCLA.