Abstract:The Euclidean Signed Distance Field (ESDF) is widely used in visibility evaluation to prevent occlusions and collisions during tracking. However, frequent ESDF updates introduce considerable computational overhead. To address this issue, we propose Eva-Tracker, a visibility-aware trajectory planning framework for aerial tracking that eliminates ESDF updates and incorporates a recovery-capable path generation method for target reacquisition. First, we design a target trajectory prediction method and a visibility-aware initial path generation algorithm that maintain an appropriate observation distance, avoid occlusions, and enable rapid replanning to reacquire the target when it is lost. Then, we propose the Field of View ESDF (FoV-ESDF), a precomputed ESDF tailored to the tracker's field of view, enabling rapid visibility evaluation without requiring updates. Finally, we optimize the trajectory using differentiable FoV-ESDF-based objectives to ensure continuous visibility throughout the tracking process. Extensive simulations and real-world experiments demonstrate that our approach delivers more robust tracking results with lower computational effort than existing state-of-the-art methods. The source code is available at https://github.com/Yue-0/Eva-Tracker.
Abstract:In this report, we introduce Xiaomi-Robotics-0, an advanced vision-language-action (VLA) model optimized for high performance and fast and smooth real-time execution. The key to our method lies in a carefully designed training recipe and deployment strategy. Xiaomi-Robotics-0 is first pre-trained on large-scale cross-embodiment robot trajectories and vision-language data, endowing it with broad and generalizable action-generation capabilities while avoiding catastrophic forgetting of the visual-semantic knowledge of the underlying pre-trained VLM. During post-training, we propose several techniques for training the VLA model for asynchronous execution to address the inference latency during real-robot rollouts. During deployment, we carefully align the timesteps of consecutive predicted action chunks to ensure continuous and seamless real-time rollouts. We evaluate Xiaomi-Robotics-0 extensively in simulation benchmarks and on two challenging real-robot tasks that require precise and dexterous bimanual manipulation. Results show that our method achieves state-of-the-art performance across all simulation benchmarks. Moreover, Xiaomi-Robotics-0 can roll out fast and smoothly on real robots using a consumer-grade GPU, achieving high success rates and throughput on both real-robot tasks. To facilitate future research, code and model checkpoints are open-sourced at https://xiaomi-robotics-0.github.io
Abstract:Understanding visual degradations is a critical yet challenging problem in computer vision. While recent Vision-Language Models (VLMs) excel at qualitative description, they often fall short in understanding the parametric physics underlying image degradations. In this work, we redefine degradation understanding as a hierarchical structured prediction task, necessitating the concurrent estimation of degradation types, parameter keys, and their continuous physical values. Although these sub-tasks operate in disparate spaces, we prove that they can be unified under one autoregressive next-token prediction paradigm, whose error is bounded by the value-space quantization grid. Building on this insight, we introduce DU-VLM, a multimodal chain-of-thought model trained with supervised fine-tuning and reinforcement learning using structured rewards. Furthermore, we show that DU-VLM can serve as a zero-shot controller for pre-trained diffusion models, enabling high-fidelity image restoration without fine-tuning the generative backbone. We also introduce \textbf{DU-110k}, a large-scale dataset comprising 110,000 clean-degraded pairs with grounded physical annotations. Extensive experiments demonstrate that our approach significantly outperforms generalist baselines in both accuracy and robustness, exhibiting generalization to unseen distributions.
Abstract:In this report, we introduce ERNIE 5.0, a natively autoregressive foundation model desinged for unified multimodal understanding and generation across text, image, video, and audio. All modalities are trained from scratch under a unified next-group-of-tokens prediction objective, based on an ultra-sparse mixture-of-experts (MoE) architecture with modality-agnostic expert routing. To address practical challenges in large-scale deployment under diverse resource constraints, ERNIE 5.0 adopts a novel elastic training paradigm. Within a single pre-training run, the model learns a family of sub-models with varying depths, expert capacities, and routing sparsity, enabling flexible trade-offs among performance, model size, and inference latency in memory- or time-constrained scenarios. Moreover, we systematically address the challenges of scaling reinforcement learning to unified foundation models, thereby guaranteeing efficient and stable post-training under ultra-sparse MoE architectures and diverse multimodal settings. Extensive experiments demonstrate that ERNIE 5.0 achieves strong and balanced performance across multiple modalities. To the best of our knowledge, among publicly disclosed models, ERNIE 5.0 represents the first production-scale realization of a trillion-parameter unified autoregressive model that supports both multimodal understanding and generation. To facilitate further research, we present detailed visualizations of modality-agnostic expert routing in the unified model, alongside comprehensive empirical analysis of elastic training, aiming to offer profound insights to the community.
Abstract:The deployment of Large Language Models in Medical Question Answering is severely hampered by ambiguous user queries, a significant safety risk that demonstrably reduces answer accuracy in high-stakes healthcare settings. In this paper, we formalize this challenge by linking input ambiguity to aleatoric uncertainty (AU), which is the irreducible uncertainty arising from underspecified input. To facilitate research in this direction, we construct CV-MedBench, the first benchmark designed for studying input ambiguity in Medical QA. Using this benchmark, we analyze AU from a representation engineering perspective, revealing that AU is linearly encoded in LLM's internal activation patterns. Leveraging this insight, we introduce a novel AU-guided "Clarify-Before-Answer" framework, which incorporates AU-Probe - a lightweight module that detects input ambiguity directly from hidden states. Unlike existing uncertainty estimation methods, AU-Probe requires neither LLM fine-tuning nor multiple forward passes, enabling an efficient mechanism to proactively request user clarification and significantly enhance safety. Extensive experiments across four open LLMs demonstrate the effectiveness of our QA framework, with an average accuracy improvement of 9.48% over baselines. Our framework provides an efficient and robust solution for safe Medical QA, strengthening the reliability of health-related applications. The code is available at https://github.com/yaokunliu/AU-Med.git, and the CV-MedBench dataset is released on Hugging Face at https://huggingface.co/datasets/yaokunl/CV-MedBench.
Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.
Abstract:As high-quality data becomes increasingly difficult to obtain, data-free self-evolution has emerged as a promising paradigm. This approach allows large language models (LLMs) to autonomously generate and solve complex problems, thereby improving their reasoning capabilities. However, multi-turn search agents struggle in data-free self-evolution due to the limited question diversity and the substantial compute required for multi-step reasoning and tool using. In this work, we introduce Dr. Zero, a framework enabling search agents to effectively self-evolve without any training data. In particular, we design a self-evolution feedback loop where a proposer generates diverse questions to train a solver initialized from the same base model. As the solver evolves, it incentivizes the proposer to produce increasingly difficult yet solvable tasks, thus establishing an automated curriculum to refine both agents. To enhance training efficiency, we also introduce hop-grouped relative policy optimization (HRPO). This method clusters structurally similar questions to construct group-level baselines, effectively minimizing the sampling overhead in evaluating each query's individual difficulty and solvability. Consequently, HRPO significantly reduces the compute requirements for solver training without compromising performance or stability. Extensive experiment results demonstrate that the data-free Dr. Zero matches or surpasses fully supervised search agents, proving that complex reasoning and search capabilities can emerge solely through self-evolution.
Abstract:Precise localization of GUI elements is crucial for the development of GUI agents. Traditional methods rely on bounding box or center-point regression, neglecting spatial interaction uncertainty and visual-semantic hierarchies. Recent methods incorporate attention mechanisms but still face two key issues: (1) ignoring processing background regions causes attention drift from the desired area, and (2) uniform modeling the target UI element fails to distinguish between its center and edges, leading to click imprecision. Inspired by how humans visually process and interact with GUI elements, we propose the Valley-to-Peak (V2P) method to address these issues. To mitigate background distractions, V2P introduces a suppression attention mechanism that minimizes the model's focus on irrelevant regions to highlight the intended region. For the issue of center-edge distinction, V2P applies a Fitts' Law-inspired approach by modeling GUI interactions as 2D Gaussian heatmaps where the weight gradually decreases from the center towards the edges. The weight distribution follows a Gaussian function, with the variance determined by the target's size. Consequently, V2P effectively isolates the target area and teaches the model to concentrate on the most essential point of the UI element. The model trained by V2P achieves the performance with 92.4\% and 52.5\% on two benchmarks ScreenSpot-v2 and ScreenSpot-Pro (see Fig.~\ref{fig:main_results_charts}). Ablations further confirm each component's contribution, underscoring V2P's generalizability in precise GUI grounding tasks and its potential for real-world deployment in future GUI agents.
Abstract:The advancement of LLM agents with tool-use capabilities requires diverse and complex training corpora. Existing data generation methods, which predominantly follow a paradigm of random sampling and shallow generation, often yield simple and homogeneous trajectories that fail to capture complex, implicit logical dependencies. To bridge this gap, we introduce HardGen, an automatic agentic pipeline designed to generate hard tool-use training samples with verifiable reasoning. Firstly, HardGen establishes a dynamic API Graph built upon agent failure cases, from which it samples to synthesize hard traces. Secondly, these traces serve as conditional priors to guide the instantiation of modular, abstract advanced tools, which are subsequently leveraged to formulate hard queries. Finally, the advanced tools and hard queries enable the generation of verifiable complex Chain-of-Thought (CoT), with a closed-loop evaluation feedback steering the continuous refinement of the process. Extensive evaluations demonstrate that a 4B parameter model trained with our curated dataset achieves superior performance compared to several leading open-source and closed-source competitors (e.g., GPT-5.2, Gemini-3-Pro and Claude-Opus-4.5). Our code, models, and dataset will be open-sourced to facilitate future research.
Abstract:Movable antenna (MA) has emerged as a promising technology to enhance wireless communication performance by exploiting the new degree of freedom (DoF) via antenna position optimization. In this letter, we investigate the MA-enhanced wide beam coverage over multiple subregions in the spatial domain. Specifically, we aim to maximize the minimum beam gain over the desired subregions by jointly optimizing the transmit beamforming and antenna position vector (APV). Although this problem is non-convex, we propose an efficient algorithm to solve it by leveraging the similarity between the considered multi-region coverage and classical multi-notch filter (MNF) design. In particular, we construct a spatial MNF-based transmit beamforming vector by assuming a continuous amplitude and phase-shift profile within the antenna movement region. Based on this continuous profile, we propose a sequential update algorithm to select an optimal subset of MA positions for multi-region coverage, jointly with a Gibbs sampling (GS) procedure to avoid undesired local optimum. Numerical results show that our proposed algorithm can significantly outperform conventional fixed position antennas (FPAs) and achieve a comparable performance to the alternating optimization (AO) algorithm with dramatically lower complexity.