Abstract:Movable antenna (MA) has emerged as a promising technology to enhance wireless communication performance by exploiting the new degree of freedom (DoF) via antenna position optimization. In this letter, we investigate the MA-enhanced wide beam coverage over multiple subregions in the spatial domain. Specifically, we aim to maximize the minimum beam gain over the desired subregions by jointly optimizing the transmit beamforming and antenna position vector (APV). Although this problem is non-convex, we propose an efficient algorithm to solve it by leveraging the similarity between the considered multi-region coverage and classical multi-notch filter (MNF) design. In particular, we construct a spatial MNF-based transmit beamforming vector by assuming a continuous amplitude and phase-shift profile within the antenna movement region. Based on this continuous profile, we propose a sequential update algorithm to select an optimal subset of MA positions for multi-region coverage, jointly with a Gibbs sampling (GS) procedure to avoid undesired local optimum. Numerical results show that our proposed algorithm can significantly outperform conventional fixed position antennas (FPAs) and achieve a comparable performance to the alternating optimization (AO) algorithm with dramatically lower complexity.
Abstract:Vegetation index (VI) saturation during the dense canopy stage and limited ground-truth annotations of winter wheat constrain accurate estimation of LAI and SPAD. Existing VI-based and texture-driven machine learning methods exhibit limited feature expressiveness. In addition, deep learning baselines suffer from domain gaps and high data demands, which restrict their generalization. Therefore, this study proposes the Multi-Channel Vegetation Indices Saturation Aware Net (MCVI-SANet), a lightweight semi-supervised vision model. The model incorporates a newly designed Vegetation Index Saturation-Aware Block (VI-SABlock) for adaptive channel-spatial feature enhancement. It also integrates a VICReg-based semi-supervised strategy to further improve generalization. Datasets were partitioned using a vegetation height-informed strategy to maintain representativeness across growth stages. Experiments over 10 repeated runs demonstrate that MCVI-SANet achieves state-of-the-art accuracy. The model attains an average R2 of 0.8123 and RMSE of 0.4796 for LAI, and an average R2 of 0.6846 and RMSE of 2.4222 for SPAD. This performance surpasses the best-performing baselines, with improvements of 8.95% in average LAI R2 and 8.17% in average SPAD R2. Moreover, MCVI-SANet maintains high inference speed with only 0.10M parameters. Overall, the integration of semi-supervised learning with agronomic priors provides a promising approach for enhancing remote sensing-based precision agriculture.
Abstract:At the most basic level, pixels are the source of the visual information through which we perceive the world. Pixels contain information at all levels, ranging from low-level attributes to high-level concepts. Autoencoders represent a classical and long-standing paradigm for learning representations from pixels or other raw inputs. In this work, we demonstrate that autoencoder-based self-supervised learning remains competitive today and can produce strong representations for downstream tasks, while remaining simple, stable, and efficient. Our model, codenamed "Pixio", is an enhanced masked autoencoder (MAE) with more challenging pre-training tasks and more capable architectures. The model is trained on 2B web-crawled images with a self-curation strategy with minimal human curation. Pixio performs competitively across a wide range of downstream tasks in the wild, including monocular depth estimation (e.g., Depth Anything), feed-forward 3D reconstruction (i.e., MapAnything), semantic segmentation, and robot learning, outperforming or matching DINOv3 trained at similar scales. Our results suggest that pixel-space self-supervised learning can serve as a promising alternative and a complement to latent-space approaches.
Abstract:Timely and accurate detection of foliar diseases is vital for safeguarding crop growth and reducing yield losses. Yet, in real-field conditions, cluttered backgrounds, domain shifts, and limited lesion-level datasets hinder robust modeling. To address these challenges, we release Daylily-Leaf, a paired lesion-level dataset comprising 1,746 RGB images and 7,839 lesions captured under both ideal and in-field conditions, and propose TCLeaf-Net, a transformer-convolution hybrid detector optimized for real-field use. TCLeaf-Net is designed to tackle three major challenges. To mitigate interference from complex backgrounds, the transformer-convolution module (TCM) couples global context with locality-preserving convolution to suppress non-leaf regions. To reduce information loss during downsampling, the raw-scale feature recalling and sampling (RSFRS) block combines bilinear resampling and convolution to preserve fine spatial detail. To handle variations in lesion scale and feature shifts, the deformable alignment block with FPN (DFPN) employs offset-based alignment and multi-receptive-field perception to strengthen multi-scale fusion. Experimental results show that on the in-field split of the Daylily-Leaf dataset, TCLeaf-Net improves mAP@50 by 5.4 percentage points over the baseline model, reaching 78.2\%, while reducing computation by 7.5 GFLOPs and GPU memory usage by 8.7\%. Moreover, the model outperforms recent YOLO and RT-DETR series in both precision and recall, and demonstrates strong performance on the PlantDoc, Tomato-Leaf, and Rice-Leaf datasets, validating its robustness and generalizability to other plant disease detection scenarios.
Abstract:Despite the effectiveness of quantization-aware training (QAT) in compressing deep neural networks, its performance on multi-task architectures often degrades significantly due to task-specific feature discrepancies and gradient conflicts. To address these challenges, we propose Gradient-Aware Balanced Feature Fusion (GABFusion), which dynamically balances gradient magnitudes and fuses task-specific features in a quantization-friendly manner. We further introduce Attention Distribution Alignment (ADA), a feature-level distillation strategy tailored for quantized models. Our method demonstrates strong generalization across network architectures and QAT algorithms, with theoretical guarantees on gradient bias reduction. Extensive experiments demonstrate that our strategy consistently enhances a variety of QAT methods across different network architectures and bit-widths. On PASCAL VOC and COCO datasets, the proposed approach achieves average mAP improvements of approximately 3.3% and 1.6%, respectively. When applied to YOLOv5 under 4-bit quantization, our method narrows the accuracy gap with the full-precision model to only 1.7% on VOC, showcasing its effectiveness in preserving performance under low-bit constraints. Notably, the proposed framework is modular, easy to integrate, and compatible with any existing QAT technique-enhancing the performance of quantized models without requiring modifications to the original network architecture.
Abstract:Data-driven robotic manipulation learning depends on large-scale, high-quality expert demonstration datasets. However, existing datasets, which primarily rely on human teleoperated robot collection, are limited in terms of scalability, trajectory smoothness, and applicability across different robotic embodiments in real-world environments. In this paper, we present FastUMI-100K, a large-scale UMI-style multimodal demonstration dataset, designed to overcome these limitations and meet the growing complexity of real-world manipulation tasks. Collected by FastUMI, a novel robotic system featuring a modular, hardware-decoupled mechanical design and an integrated lightweight tracking system, FastUMI-100K offers a more scalable, flexible, and adaptable solution to fulfill the diverse requirements of real-world robot demonstration data. Specifically, FastUMI-100K contains over 100K+ demonstration trajectories collected across representative household environments, covering 54 tasks and hundreds of object types. Our dataset integrates multimodal streams, including end-effector states, multi-view wrist-mounted fisheye images and textual annotations. Each trajectory has a length ranging from 120 to 500 frames. Experimental results demonstrate that FastUMI-100K enables high policy success rates across various baseline algorithms, confirming its robustness, adaptability, and real-world applicability for solving complex, dynamic manipulation challenges. The source code and dataset will be released in this link https://github.com/MrKeee/FastUMI-100K.
Abstract:Learning manipulation skills from human demonstration videos presents a promising yet challenging problem, primarily due to the significant embodiment gap between human body and robot manipulators. Existing methods rely on paired datasets or hand-crafted rewards, which limit scalability and generalization. We propose TrajSkill, a framework for Trajectory Conditioned Cross-embodiment Skill Transfer, enabling robots to acquire manipulation skills directly from human demonstration videos. Our key insight is to represent human motions as sparse optical flow trajectories, which serve as embodiment-agnostic motion cues by removing morphological variations while preserving essential dynamics. Conditioned on these trajectories together with visual and textual inputs, TrajSkill jointly synthesizes temporally consistent robot manipulation videos and translates them into executable actions, thereby achieving cross-embodiment skill transfer. Extensive experiments are conducted, and the results on simulation data (MetaWorld) show that TrajSkill reduces FVD by 39.6\% and KVD by 36.6\% compared with the state-of-the-art, and improves cross-embodiment success rate by up to 16.7\%. Real-robot experiments in kitchen manipulation tasks further validate the effectiveness of our approach, demonstrating practical human-to-robot skill transfer across embodiments.




Abstract:Multimodal agents built on large vision-language models (LVLMs) are increasingly deployed in open-world settings but remain highly vulnerable to prompt injection, especially through visual inputs. We introduce AgentTypo, a black-box red-teaming framework that mounts adaptive typographic prompt injection by embedding optimized text into webpage images. Our automatic typographic prompt injection (ATPI) algorithm maximizes prompt reconstruction by substituting captioners while minimizing human detectability via a stealth loss, with a Tree-structured Parzen Estimator guiding black-box optimization over text placement, size, and color. To further enhance attack strength, we develop AgentTypo-pro, a multi-LLM system that iteratively refines injection prompts using evaluation feedback and retrieves successful past examples for continual learning. Effective prompts are abstracted into generalizable strategies and stored in a strategy repository, enabling progressive knowledge accumulation and reuse in future attacks. Experiments on the VWA-Adv benchmark across Classifieds, Shopping, and Reddit scenarios show that AgentTypo significantly outperforms the latest image-based attacks such as AgentAttack. On GPT-4o agents, our image-only attack raises the success rate from 0.23 to 0.45, with consistent results across GPT-4V, GPT-4o-mini, Gemini 1.5 Pro, and Claude 3 Opus. In image+text settings, AgentTypo achieves 0.68 ASR, also outperforming the latest baselines. Our findings reveal that AgentTypo poses a practical and potent threat to multimodal agents and highlight the urgent need for effective defense.




Abstract:Recent advances in large language models (LLMs) have enabled promising performance in unit test generation through in-context learning (ICL). However, the quality of in-context examples significantly influences the effectiveness of generated tests-poorly structured or semantically unclear test examples often lead to suboptimal outputs. In this paper, we propose CLAST, a novel technique that systematically refines unit tests to improve their semantic clarity, thereby enhancing their utility as in-context examples. The approach decomposes complex tests into logically clearer ones and improves semantic clarity through a combination of program analysis and LLM-based rewriting. We evaluated CLAST on four open-source and three industrial projects. The results demonstrate that CLAST largely outperforms UTgen, the state-of-the-art refinement technique, in both preserving test effectiveness and enhancing semantic clarity. Specifically, CLAST fully retains the original effectiveness of unit tests, while UTgen reduces compilation success rate (CSR), pass rate (PR), test coverage (Cov), and mutation score (MS) by an average of 12.90%, 35.82%, 4.65%, and 5.07%, respectively. Over 85.33% of participants in our user study preferred the semantic clarity of CLAST-refined tests. Notably, incorporating CLAST-refined tests as examples effectively improves ICL-based unit test generation approaches such as RAGGen and TELPA, resulting in an average increase of 25.97% in CSR, 28.22% in PR, and 45.99% in Cov for generated tests, compared to incorporating UTgen-refined tests. The insights from the follow-up user study not only reinforce CLAST's potential impact in software testing practice but also illuminate avenues for future research.




Abstract:While Transformer architecture excel at modeling long-range dependencies contributing to its widespread adoption in vision tasks the quadratic complexity of softmax-based attention mechanisms imposes a major bottleneck, particularly when processing high-resolution images. Linear attention presents a promising alternative by reformulating the attention computation from $(QK)V$ to $Q(KV)$, thereby reducing the complexity from $\mathcal{O}(N^2)$ to $\mathcal{O}(N)$ while preserving the global receptive field. However, most existing methods compress historical key-value (KV) information uniformly, which can lead to feature redundancy and the loss of directional alignment with the query (Q). This uniform compression results in low-rank $KV$ feature maps, contributing to a performance gap compared to softmax attention. To mitigate this limitation, we propose \textbf{S}elective \textbf{A}daptive \textbf{GA}ting for Efficient and Expressive Linear Attention (SAGA) , which introduces input-adaptive learnable gates to selectively modulate information aggregation into the $KV$ feature map. These gates enhance semantic diversity and alleviate the low-rank constraint inherent in conventional linear attention. Additionally, we propose an efficient Hadamard-product decomposition method for gate computation, which introduces no additional memory overhead. Experiments demonstrate that SAGA achieves a 1.76$\times$ improvement in throughput and a 2.69$\times$ reduction in peak GPU memory compared to PVT-T at a resolution of $1280 \times 1280$. Moreover, it improves top-1 accuracy by up to 4.4\% on the ImageNet dataset, demonstrating both computational efficiency and model effectiveness.