Abstract:Multimodal Large Language Models (MLLMs) have gained significant attention due to their impressive capabilities in multimodal understanding. However, existing methods rely heavily on extensive modal-specific pretraining and joint-modal tuning, leading to significant computational burdens when expanding to new modalities. In this paper, we propose PathWeave, a flexible and scalable framework with modal-Path sWitching and ExpAnsion abilities that enables MLLMs to continually EVolve on modalities for $\mathbb{X}$-modal reasoning. We leverage the concept of Continual Learning and develop an incremental training strategy atop pre-trained MLLMs, enabling their expansion to new modalities using uni-modal data, without executing joint-modal pretraining. In detail, a novel Adapter-in-Adapter (AnA) framework is introduced, in which uni-modal and cross-modal adapters are seamlessly integrated to facilitate efficient modality alignment and collaboration. Additionally, an MoE-based gating module is applied between two types of adapters to further enhance the multimodal interaction. To investigate the proposed method, we establish a challenging benchmark called Continual Learning of Modality (MCL), which consists of high-quality QA data from five distinct modalities: image, video, audio, depth and point cloud. Extensive experiments demonstrate the effectiveness of the proposed AnA framework on learning plasticity and memory stability during continual learning. Furthermore, PathWeave performs comparably to state-of-the-art MLLMs while concurrently reducing parameter training burdens by 98.73%. Our code locates at https://github.com/JiazuoYu/PathWeave
Abstract:Cross-modal metric learning is a prominent research topic that bridges the semantic heterogeneity between vision and language. Existing methods frequently utilize simple cosine or complex distance metrics to transform the pairwise features into a similarity score, which suffers from an inadequate or inefficient capability for distance measurements. Consequently, we propose a Generalized Structural Sparse Function to dynamically capture thorough and powerful relationships across modalities for pair-wise similarity learning while remaining concise but efficient. Specifically, the distance metric delicately encapsulates two formats of diagonal and block-diagonal terms, automatically distinguishing and highlighting the cross-channel relevancy and dependency inside a structured and organized topology. Hence, it thereby empowers itself to adapt to the optimal matching patterns between the paired features and reaches a sweet spot between model complexity and capability. Extensive experiments on cross-modal and two extra uni-modal retrieval tasks (image-text retrieval, person re-identification, fine-grained image retrieval) have validated its superiority and flexibility over various popular retrieval frameworks. More importantly, we further discover that it can be seamlessly incorporated into multiple application scenarios, and demonstrates promising prospects from Attention Mechanism to Knowledge Distillation in a plug-and-play manner. Our code is publicly available at: https://github.com/Paranioar/GSSF.
Abstract:Adversarial training (AT) refers to integrating adversarial examples -- inputs altered with imperceptible perturbations that can significantly impact model predictions -- into the training process. Recent studies have demonstrated the effectiveness of AT in improving the robustness of deep neural networks against diverse adversarial attacks. However, a comprehensive overview of these developments is still missing. This survey addresses this gap by reviewing a broad range of recent and representative studies. Specifically, we first describe the implementation procedures and practical applications of AT, followed by a comprehensive review of AT techniques from three perspectives: data enhancement, network design, and training configurations. Lastly, we discuss common challenges in AT and propose several promising directions for future research.
Abstract:In the realm of high-resolution (HR), fine-grained image segmentation, the primary challenge is balancing broad contextual awareness with the precision required for detailed object delineation, capturing intricate details and the finest edges of objects. Diffusion models, trained on vast datasets comprising billions of image-text pairs, such as SD V2.1, have revolutionized text-to-image synthesis by delivering exceptional quality, fine detail resolution, and strong contextual awareness, making them an attractive solution for high-resolution image segmentation. To this end, we propose DiffDIS, a diffusion-driven segmentation model that taps into the potential of the pre-trained U-Net within diffusion models, specifically designed for high-resolution, fine-grained object segmentation. By leveraging the robust generalization capabilities and rich, versatile image representation prior of the SD models, coupled with a task-specific stable one-step denoising approach, we significantly reduce the inference time while preserving high-fidelity, detailed generation. Additionally, we introduce an auxiliary edge generation task to not only enhance the preservation of fine details of the object boundaries, but reconcile the probabilistic nature of diffusion with the deterministic demands of segmentation. With these refined strategies in place, DiffDIS serves as a rapid object mask generation model, specifically optimized for generating detailed binary maps at high resolutions, while demonstrating impressive accuracy and swift processing. Experiments on the DIS5K dataset demonstrate the superiority of DiffDIS, achieving state-of-the-art results through a streamlined inference process. Our code will be made publicly available.
Abstract:Underwater object detection (UOD), aiming to identify and localise the objects in underwater images or videos, presents significant challenges due to the optical distortion, water turbidity, and changing illumination in underwater scenes. In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD. To further facilitate future advancements, we comprehensively study AI-based UOD. In this survey, we first categorise existing algorithms into traditional machine learning-based methods and deep learning-based methods, and summarise them by considering learning strategy, experimental dataset, utilised features or frameworks, and learning stage. Next, we discuss the potential challenges and suggest possible solutions and new directions. We also perform both quantitative and qualitative evaluations of mainstream algorithms across multiple benchmark datasets by considering the diverse and biased experimental setups. Finally, we introduce two off-the-shelf detection analysis tools, Diagnosis and TIDE, which well-examine the effects of object characteristics and various types of errors on detectors. These tools help identify the strengths and weaknesses of detectors, providing insigts for further improvement. The source codes, trained models, utilised datasets, detection results, and detection analysis tools are public available at \url{https://github.com/LongChenCV/UODReview}, and will be regularly updated.
Abstract:Existing few-shot segmentation (FSS) methods mainly focus on designing novel support-query matching and self-matching mechanisms to exploit implicit knowledge in pre-trained backbones. However, the performance of these methods is often constrained by models pre-trained on classification tasks. The exploration of what types of pre-trained models can provide more beneficial implicit knowledge for FSS remains limited. In this paper, inspired by the representation consistency of foundational computer vision models, we develop a FSS framework based on foundation models. To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence and introduce a lightweight decoder to refine coarse correspondence for fine-grained segmentation. We systematically summarize the performance of various foundation models on FSS and discover that the implicit knowledge within some of these models is more beneficial for FSS than models pre-trained on classification tasks. Extensive experiments on two widely used datasets demonstrate the effectiveness of our approach in leveraging the implicit knowledge of foundation models. Notably, the combination of DINOv2 and DFN exceeds previous state-of-the-art methods by 17.5% on COCO-20i. Code is available at https://github.com/DUT-CSJ/FoundationFSS.
Abstract:Automatic and precise medical image segmentation (MIS) is of vital importance for clinical diagnosis and analysis. Current MIS methods mainly rely on the convolutional neural network (CNN) or self-attention mechanism (Transformer) for feature modeling. However, CNN-based methods suffer from the inaccurate localization owing to the limited global dependency while Transformer-based methods always present the coarse boundary for the lack of local emphasis. Although some CNN-Transformer hybrid methods are designed to synthesize the complementary local and global information for better performance, the combination of CNN and Transformer introduces numerous parameters and increases the computation cost. To this end, this paper proposes a CNN-Transformer rectified collaborative learning (CTRCL) framework to learn stronger CNN-based and Transformer-based models for MIS tasks via the bi-directional knowledge transfer between them. Specifically, we propose a rectified logit-wise collaborative learning (RLCL) strategy which introduces the ground truth to adaptively select and rectify the wrong regions in student soft labels for accurate knowledge transfer in the logit space. We also propose a class-aware feature-wise collaborative learning (CFCL) strategy to achieve effective knowledge transfer between CNN-based and Transformer-based models in the feature space by granting their intermediate features the similar capability of category perception. Extensive experiments on three popular MIS benchmarks demonstrate that our CTRCL outperforms most state-of-the-art collaborative learning methods under different evaluation metrics.
Abstract:Existing RGB-T tracking algorithms have made remarkable progress by leveraging the global interaction capability and extensive pre-trained models of the Transformer architecture. Nonetheless, these methods mainly adopt imagepair appearance matching and face challenges of the intrinsic high quadratic complexity of the attention mechanism, resulting in constrained exploitation of temporal information. Inspired by the recently emerged State Space Model Mamba, renowned for its impressive long sequence modeling capabilities and linear computational complexity, this work innovatively proposes a pure Mamba-based framework (MambaVT) to fully exploit spatio-temporal contextual modeling for robust visible-thermal tracking. Specifically, we devise the long-range cross-frame integration component to globally adapt to target appearance variations, and introduce short-term historical trajectory prompts to predict the subsequent target states based on local temporal location clues. Extensive experiments show the significant potential of vision Mamba for RGB-T tracking, with MambaVT achieving state-of-the-art performance on four mainstream benchmarks while requiring lower computational costs. We aim for this work to serve as a simple yet strong baseline, stimulating future research in this field. The code and pre-trained models will be made available.
Abstract:Salient Object Detection (SOD) aims to identify and segment the most prominent objects in images. Advanced SOD methods often utilize various Convolutional Neural Networks (CNN) or Transformers for deep feature extraction. However, these methods still deliver low performance and poor generalization in complex cases. Recently, Segment Anything Model (SAM) has been proposed as a visual fundamental model, which gives strong segmentation and generalization capabilities. Nonetheless, SAM requires accurate prompts of target objects, which are unavailable in SOD. Additionally, SAM lacks the utilization of multi-scale and multi-level information, as well as the incorporation of fine-grained details. To address these shortcomings, we propose a Multi-scale and Detail-enhanced SAM (MDSAM) for SOD. Specifically, we first introduce a Lightweight Multi-Scale Adapter (LMSA), which allows SAM to learn multi-scale information with very few trainable parameters. Then, we propose a Multi-Level Fusion Module (MLFM) to comprehensively utilize the multi-level information from the SAM's encoder. Finally, we propose a Detail Enhancement Module (DEM) to incorporate SAM with fine-grained details. Experimental results demonstrate the superior performance of our model on multiple SOD datasets and its strong generalization on other segmentation tasks. The source code is released at https://github.com/BellyBeauty/MDSAM.
Abstract:Sign language is one of the most effective communication tools for people with hearing difficulties. Most existing works focus on improving the performance of sign language tasks on RGB videos, which may suffer from degraded recording conditions, such as fast movement of hands with motion blur and textured signer's appearance. The bio-inspired event camera, which asynchronously captures brightness change with high speed, could naturally perceive dynamic hand movements, providing rich manual clues for sign language tasks. In this work, we aim at exploring the potential of event camera in continuous sign language recognition (CSLR) and sign language translation (SLT). To promote the research, we first collect an event-based benchmark EvSign for those tasks with both gloss and spoken language annotations. EvSign dataset offers a substantial amount of high-quality event streams and an extensive vocabulary of glosses and words, thereby facilitating the development of sign language tasks. In addition, we propose an efficient transformer-based framework for event-based SLR and SLT tasks, which fully leverages the advantages of streaming events. The sparse backbone is employed to extract visual features from sparse events. Then, the temporal coherence is effectively utilized through the proposed local token fusion and gloss-aware temporal aggregation modules. Extensive experimental results are reported on both simulated (PHOENIX14T) and EvSign datasets. Our method performs favorably against existing state-of-the-art approaches with only 0.34% computational cost (0.84G FLOPS per video) and 44.2% network parameters. The project is available at https://zhang-pengyu.github.io/EVSign.