Abstract:Due to the impressive capabilities of multimodal large language models (MLLMs), recent works have focused on employing MLLM-based agents for autonomous driving in large-scale and dynamic environments. However, prevalent approaches often directly translate high-level instructions into low-level vehicle control signals, which deviates from the inherent language generation paradigm of MLLMs and fails to fully harness their emergent powers. As a result, the generalizability of these methods is highly restricted by autonomous driving datasets used during fine-tuning. To tackle this challenge, we propose to connect high-level instructions and low-level control signals with mid-level language-driven commands, which are more fine-grained than high-level instructions but more universal and explainable than control signals, and thus can effectively bridge the gap in between. We implement this idea through a hierarchical multi-agent driving system named AD-H, including a MLLM planner for high-level reasoning and a lightweight controller for low-level execution. The hierarchical design liberates the MLLM from low-level control signal decoding and therefore fully releases their emergent capability in high-level perception, reasoning, and planning. We build a new dataset with action hierarchy annotations. Comprehensive closed-loop evaluations demonstrate several key advantages of our proposed AD-H system. First, AD-H can notably outperform state-of-the-art methods in achieving exceptional driving performance, even exhibiting self-correction capabilities during vehicle operation, a scenario not encountered in the training dataset. Second, AD-H demonstrates superior generalization under long-horizon instructions and novel environmental conditions, significantly surpassing current state-of-the-art methods. We will make our data and code publicly accessible at https://github.com/zhangzaibin/AD-H
Abstract:Room acoustic parameters (RAPs) and room physical parameters ( RPPs) are essential metrics for parameterizing the room acoustical characteristics (RAC) of a sound field around a listener's local environment, offering comprehensive indications for various applications. The current RAPs and RPPs estimation methods either fall short of covering broad real-world acoustic environments in the context of real background noise or lack universal frameworks for blindly estimating RAPs and RPPs from noisy single-channel speech signals, particularly sound source distances, direction-of-arrival (DOA) of sound sources, and occupancy levels. On the other hand, in this paper, we propose a novel universal blind estimation framework called the blind estimator of room acoustical and physical parameters (BERP), by introducing a new stochastic room impulse response (RIR) model, namely, the sparse stochastic impulse response (SSIR) model, and endowing the BERP with a unified encoder and multiple separate predictors to estimate RPPs and SSIR parameters in parallel. This estimation framework enables the computationally efficient and universal estimation of room parameters by solely using noisy single-channel speech signals. Finally, all the RAPs can be simultaneously derived from the RIRs synthesized from SSIR model with the estimated parameters. To evaluate the effectiveness of the proposed BERP and SSIR models, we compile a task-specific dataset from several publicly available datasets. The results reveal that the BERP achieves state-of-the-art (SOTA) performance. Moreover, the evaluation results pertaining to the SSIR RIR model also demonstrated its efficacy. The code is available on GitHub.
Abstract:Multimodal Large Language Model (MLLMs) leverages Large Language Models as a cognitive framework for diverse visual-language tasks. Recent efforts have been made to equip MLLMs with visual perceiving and grounding capabilities. However, there still remains a gap in providing fine-grained pixel-level perceptions and extending interactions beyond text-specific inputs. In this work, we propose {\bf{AnyRef}}, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references, such as texts, boxes, images, or audio. This innovation empowers users with greater flexibility to engage with the model beyond textual and regional prompts, without modality-specific designs. Through our proposed refocusing mechanism, the generated grounding output is guided to better focus on the referenced object, implicitly incorporating additional pixel-level supervision. This simple modification utilizes attention scores generated during the inference of LLM, eliminating the need for extra computations while exhibiting performance enhancements in both grounding masks and referring expressions. With only publicly available training data, our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
Abstract:Multi-agent systems, augmented with Large Language Models (LLMs), demonstrate significant capabilities for collective intelligence. However, the potential misuse of this intelligence for malicious purposes presents significant risks. To date, comprehensive research on the safety issues associated with multi-agent systems remains limited. From the perspective of agent psychology, we discover that the dark psychological states of agents can lead to severe safety issues. To address these issues, we propose a comprehensive framework grounded in agent psychology. In our framework, we focus on three aspects: identifying how dark personality traits in agents might lead to risky behaviors, designing defense strategies to mitigate these risks, and evaluating the safety of multi-agent systems from both psychological and behavioral perspectives. Our experiments reveal several intriguing phenomena, such as the collective dangerous behaviors among agents, agents' propensity for self-reflection when engaging in dangerous behavior, and the correlation between agents' psychological assessments and their dangerous behaviors. We anticipate that our framework and observations will provide valuable insights for further research into the safety of multi-agent systems. We will make our data and code publicly accessible at https:/github.com/AI4Good24/PsySafe.
Abstract:Depth-aware panoptic segmentation is an emerging topic in computer vision which combines semantic and geometric understanding for more robust scene interpretation. Recent works pursue unified frameworks to tackle this challenge but mostly still treat it as two individual learning tasks, which limits their potential for exploring cross-domain information. We propose a deeply unified framework for depth-aware panoptic segmentation, which performs joint segmentation and depth estimation both in a per-segment manner with identical object queries. To narrow the gap between the two tasks, we further design a geometric query enhancement method, which is able to integrate scene geometry into object queries using latent representations. In addition, we propose a bi-directional guidance learning approach to facilitate cross-task feature learning by taking advantage of their mutual relations. Our method sets the new state of the art for depth-aware panoptic segmentation on both Cityscapes-DVPS and SemKITTI-DVPS datasets. Moreover, our guidance learning approach is shown to deliver performance improvement even under incomplete supervision labels.
Abstract:Recent leading zero-shot video object segmentation (ZVOS) works devote to integrating appearance and motion information by elaborately designing feature fusion modules and identically applying them in multiple feature stages. Our preliminary experiments show that with the strong long-range dependency modeling capacity of Transformer, simply concatenating the two modality features and feeding them to vanilla Transformers for feature fusion can distinctly benefit the performance but at a cost of heavy computation. Through further empirical analysis, we find that attention dependencies learned in Transformer in different stages exhibit completely different properties: global query-independent dependency in the low-level stages and semantic-specific dependency in the high-level stages. Motivated by the observations, we propose two Transformer variants: i) Context-Sharing Transformer (CST) that learns the global-shared contextual information within image frames with a lightweight computation. ii) Semantic Gathering-Scattering Transformer (SGST) that models the semantic correlation separately for the foreground and background and reduces the computation cost with a soft token merging mechanism. We apply CST and SGST for low-level and high-level feature fusions, respectively, formulating a level-isomerous Transformer framework for ZVOS task. Compared with the baseline that uses vanilla Transformers for multi-stage fusion, ours significantly increase the speed by 13 times and achieves new state-of-the-art ZVOS performance. Code is available at https://github.com/DLUT-yyc/Isomer.
Abstract:A popular approach for constructing bird's-eye-view (BEV) representation in 3D detection is to lift 2D image features onto the viewing frustum space based on explicitly predicted depth distribution. However, depth distribution can only characterize the 3D geometry of visible object surfaces but fails to capture their internal space and overall geometric structure, leading to sparse and unsatisfactory 3D representations. To mitigate this issue, we present BEV-IO, a new 3D detection paradigm to enhance BEV representation with instance occupancy information. At the core of our method is the newly-designed instance occupancy prediction (IOP) module, which aims to infer point-level occupancy status for each instance in the frustum space. To ensure training efficiency while maintaining representational flexibility, it is trained using the combination of both explicit and implicit supervision. With the predicted occupancy, we further design a geometry-aware feature propagation mechanism (GFP), which performs self-attention based on occupancy distribution along each ray in frustum and is able to enforce instance-level feature consistency. By integrating the IOP module with GFP mechanism, our BEV-IO detector is able to render highly informative 3D scene structures with more comprehensive BEV representations. Experimental results demonstrate that BEV-IO can outperform state-of-the-art methods while only adding a negligible increase in parameters (0.2%) and computational overhead (0.24%in GFLOPs).
Abstract:Over the past few decades, fiber-optic time synchronization (FOTS) has provided fundamental support for the efficient operation of modern society. Looking toward the future beyond fifth-generation/sixth-generation (B5G/6G) scenarios and very large radio telescope arrays, developing high-precision, low-complexity and scalable FOTS technology is crucial for building a large-scale time synchronization network. However, the traditional two-way FOTS method needs a data layer to exchange time delay information. This increases the complexity of system and makes it impossible to realize multiple-access time synchronization. In this paper, a time reversal enabled FOTS method is proposed. It measures the clock difference between two locations without involving a data layer, which can reduce the complexity of the system. Moreover, it can also achieve multiple-access time synchronization along the fiber link. Tests over a 230 km fiber link have been carried out to demonstrate the high performance of the proposed method.
Abstract:Compared with traditional RGB-only visual tracking, few datasets have been constructed for RGB-D tracking. In this paper, we propose ARKitTrack, a new RGB-D tracking dataset for both static and dynamic scenes captured by consumer-grade LiDAR scanners equipped on Apple's iPhone and iPad. ARKitTrack contains 300 RGB-D sequences, 455 targets, and 229.7K video frames in total. Along with the bounding box annotations and frame-level attributes, we also annotate this dataset with 123.9K pixel-level target masks. Besides, the camera intrinsic and camera pose of each frame are provided for future developments. To demonstrate the potential usefulness of this dataset, we further present a unified baseline for both box-level and pixel-level tracking, which integrates RGB features with bird's-eye-view representations to better explore cross-modality 3D geometry. In-depth empirical analysis has verified that the ARKitTrack dataset can significantly facilitate RGB-D tracking and that the proposed baseline method compares favorably against the state of the arts. The code and dataset is available at https://arkittrack.github.io.
Abstract:The speech transmission index (STI) and room acoustic parameters (RAPs), which are derived from a room impulse response (RIR), such as reverberation time and early decay time, are essential to assess speech transmission and to predict the listening difficulty in a sound field. Since it is difficult to measure RIR in daily occupied spaces, simultaneous blind estimation of STI and RAPs must be resolved as it is an imperative and challenging issue. This paper proposes a deterministic method for blindly estimating STI and five RAPs on the basis of an RIR stochastic model that approximates an unknown RIR. The proposed method formulates a temporal power envelope of a reverberant speech signal to obtain the optimal parameters for the RIR model. Simulations were conducted to evaluate STI and RAPs from observed reverberant speech signals. The root-mean-square errors between the estimated and ground-truth results were used to comparatively evaluate the proposed method with the previous method. The results showed that the proposed method can estimate STI and RAPs effectively without any training.