EJ
Abstract:We propose unsupervised multi-scenario (UMS) person re-identification (ReID) as a new task that expands ReID across diverse scenarios (cross-resolution, clothing change, etc.) within a single coherent framework. To tackle UMS-ReID, we introduce image-text knowledge modeling (ITKM) -- a three-stage framework that effectively exploits the representational power of vision-language models. We start with a pre-trained CLIP model with an image encoder and a text encoder. In Stage I, we introduce a scenario embedding in the image encoder and fine-tune the encoder to adaptively leverage knowledge from multiple scenarios. In Stage II, we optimize a set of learned text embeddings to associate with pseudo-labels from Stage I and introduce a multi-scenario separation loss to increase the divergence between inter-scenario text representations. In Stage III, we first introduce cluster-level and instance-level heterogeneous matching modules to obtain reliable heterogeneous positive pairs (e.g., a visible image and an infrared image of the same person) within each scenario. Next, we propose a dynamic text representation update strategy to maintain consistency between text and image supervision signals. Experimental results across multiple scenarios demonstrate the superiority and generalizability of ITKM; it not only outperforms existing scenario-specific methods but also enhances overall performance by integrating knowledge from multiple scenarios.
Abstract:The launch of \$Trump coin ignited a wave in meme coin investment. Copy trading, as a strategy-agnostic approach that eliminates the need for deep trading knowledge, quickly gains widespread popularity in the meme coin market. However, copy trading is not a guarantee of profitability due to the prevalence of manipulative bots, the uncertainty of the followed wallets' future performance, and the lag in trade execution. Recently, large language models (LLMs) have shown promise in financial applications by effectively understanding multi-modal data and producing explainable decisions. However, a single LLM struggles with complex, multi-faceted tasks such as asset allocation. These challenges are even more pronounced in cryptocurrency markets, where LLMs often lack sufficient domain-specific knowledge in their training data. To address these challenges, we propose an explainable multi-agent system for meme coin copy trading. Inspired by the structure of an asset management team, our system decomposes the complex task into subtasks and coordinates specialized agents to solve them collaboratively. Employing few-shot chain-of-though (CoT) prompting, each agent acquires professional meme coin trading knowledge, interprets multi-modal data, and generates explainable decisions. Using a dataset of 1,000 meme coin projects' transaction data, our empirical evaluation shows that the proposed multi-agent system outperforms both traditional machine learning models and single LLMs, achieving 73% and 70% precision in identifying high-quality meme coin projects and key opinion leader (KOL) wallets, respectively. The selected KOLs collectively generated a total profit of \$500,000 across these projects.
Abstract:Emoticons are widely used in digital communication to convey affective intent, yet their safety implications for Large Language Models (LLMs) remain largely unexplored. In this paper, we identify emoticon semantic confusion, a vulnerability where LLMs misinterpret ASCII-based emoticons to perform unintended and even destructive actions. To systematically study this phenomenon, we develop an automated data generation pipeline and construct a dataset containing 3,757 code-oriented test cases spanning 21 meta-scenarios, four programming languages, and varying contextual complexities. Our study on six LLMs reveals that emoticon semantic confusion is pervasive, with an average confusion ratio exceeding 38%. More critically, over 90% of confused responses yield 'silent failures', which are syntactically valid outputs but deviate from user intent, potentially leading to destructive security consequences. Furthermore, we observe that this vulnerability readily transfers to popular agent frameworks, while existing prompt-based mitigations remain largely ineffective. We call on the community to recognize this emerging vulnerability and develop effective mitigation methods to uphold the safety and reliability of the LLM system.
Abstract:Accurate molecular subtype classification is essential for personalized breast cancer treatment, yet conventional immunohistochemical analysis relies on invasive biopsies and is prone to sampling bias. Although dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) enables non-invasive tumor characterization, clinical workflows typically acquire only single-phase post-contrast images to reduce scan time and contrast agent dose. In this study, we propose a spatial multi-task learning framework for breast cancer molecular subtype prediction from clinically practical single-phase DCE-MRI. The framework simultaneously predicts estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) status, and the Ki-67 proliferation index -- biomarkers that collectively define molecular subtypes. The architecture integrates a deep feature extraction network with multi-scale spatial attention to capture intratumoral and peritumoral characteristics, together with a region-of-interest weighting module that emphasizes the tumor core, rim, and surrounding tissue. Multi-task learning exploits biological correlations among biomarkers through shared representations with task-specific prediction branches. Experiments on a dataset of 960 cases (886 internal cases split 7:1:2 for training/validation/testing, and 74 external cases evaluated via five-fold cross-validation) demonstrate that the proposed method achieves an AUC of 0.893, 0.824, and 0.857 for ER, PR, and HER2 classification, respectively, and a mean absolute error of 8.2\% for Ki-67 regression, significantly outperforming radiomics and single-task deep learning baselines. These results indicate the feasibility of accurate, non-invasive molecular subtype prediction using standard imaging protocols.
Abstract:While humans develop core visual skills long before acquiring language, contemporary Multimodal LLMs (MLLMs) still rely heavily on linguistic priors to compensate for their fragile visual understanding. We uncovered a crucial fact: state-of-the-art MLLMs consistently fail on basic visual tasks that humans, even 3-year-olds, can solve effortlessly. To systematically investigate this gap, we introduce BabyVision, a benchmark designed to assess core visual abilities independent of linguistic knowledge for MLLMs. BabyVision spans a wide range of tasks, with 388 items divided into 22 subclasses across four key categories. Empirical results and human evaluation reveal that leading MLLMs perform significantly below human baselines. Gemini3-Pro-Preview scores 49.7, lagging behind 6-year-old humans and falling well behind the average adult score of 94.1. These results show despite excelling in knowledge-heavy evaluations, current MLLMs still lack fundamental visual primitives. Progress in BabyVision represents a step toward human-level visual perception and reasoning capabilities. We also explore solving visual reasoning with generation models by proposing BabyVision-Gen and automatic evaluation toolkit. Our code and benchmark data are released at https://github.com/UniPat-AI/BabyVision for reproduction.
Abstract:Instant-messaging human social chat typically progresses through a sequence of short messages. Existing step-by-step AI chatting systems typically split a one-shot generation into multiple messages and send them sequentially, but they lack an active waiting mechanism and exhibit unnatural message pacing. In order to address these issues, we propose Stephanie2, a novel next-generation step-wise decision-making dialogue agent. With active waiting and message-pace adaptation, Stephanie2 explicitly decides at each step whether to send or wait, and models latency as the sum of thinking time and typing time to achieve more natural pacing. We further introduce a time-window-based dual-agent dialogue system to generate pseudo dialogue histories for human and automatic evaluations. Experiments show that Stephanie2 clearly outperforms Stephanie1 on metrics such as naturalness and engagement, and achieves a higher pass rate on human evaluation with the role identification Turing test.
Abstract:Three-dimensional medical image segmentation is a fundamental yet computationally demanding task due to the cubic growth of voxel processing and the redundant computation on homogeneous regions. To address these limitations, we propose \textbf{TokenSeg}, a boundary-aware sparse token representation framework for efficient 3D medical volume segmentation. Specifically, (1) we design a \emph{multi-scale hierarchical encoder} that extracts 400 candidate tokens across four resolution levels to capture both global anatomical context and fine boundary details; (2) we introduce a \emph{boundary-aware tokenizer} that combines VQ-VAE quantization with importance scoring to select 100 salient tokens, over 60\% of which lie near tumor boundaries; and (3) we develop a \emph{sparse-to-dense decoder} that reconstructs full-resolution masks through token reprojection, progressive upsampling, and skip connections. Extensive experiments on a 3D breast DCE-MRI dataset comprising 960 cases demonstrate that TokenSeg achieves state-of-the-art performance with 94.49\% Dice and 89.61\% IoU, while reducing GPU memory and inference latency by 64\% and 68\%, respectively. To verify the generalization capability, our evaluations on MSD cardiac and brain MRI benchmark datasets demonstrate that TokenSeg consistently delivers optimal performance across heterogeneous anatomical structures. These results highlight the effectiveness of anatomically informed sparse representation for accurate and efficient 3D medical image segmentation.
Abstract:The rapid advancement of large language models (LLMs) has led to growing interest in using synthetic data to train future models. However, this creates a self-consuming retraining loop, where models are trained on their own outputs and may cause performance drops and induce emerging biases. In real-world applications, previously deployed LLMs may influence the data they generate, leading to a dynamic system driven by user feedback. For example, if a model continues to underserve users from a group, less query data will be collected from this particular demographic of users. In this study, we introduce the concept of \textbf{S}elf-\textbf{C}onsuming \textbf{P}erformative \textbf{L}oop (\textbf{SCPL}) and investigate the role of synthetic data in shaping bias during these dynamic iterative training processes under controlled performative feedback. This controlled setting is motivated by the inaccessibility of real-world user preference data from dynamic production systems, and enables us to isolate and analyze feedback-driven bias evolution in a principled manner. We focus on two types of loops, including the typical retraining setting and the incremental fine-tuning setting, which is largely underexplored. Through experiments on three real-world tasks, we find that the performative loop increases preference bias and decreases disparate bias. We design a reward-based rejection sampling strategy to mitigate the bias, moving towards more trustworthy self-improving systems.
Abstract:Feature-based anomaly detection is widely adopted in industrial inspection due to the strong representational power of large pre-trained vision encoders. While most existing methods focus on improving within-category anomaly scoring, practical deployments increasingly require task-agnostic operation under continual category expansion, where the category identity is unknown at test time. In this setting, overall performance is often dominated by expert selection, namely routing an input to an appropriate normality model before any head-specific scoring is applied. However, routing rules that compare head-specific anomaly scores across independently constructed heads are unreliable in practice, as score distributions can differ substantially across categories in scale and tail behavior. We propose GCR, a lightweight mixture-of-experts framework for stabilizing task-agnostic continual anomaly detection through geometry-consistent routing. GCR routes each test image directly in a shared frozen patch-embedding space by minimizing an accumulated nearest-prototype distance to category-specific prototype banks, and then computes anomaly maps only within the routed expert using a standard prototype-based scoring rule. By separating cross-head decision making from within-head anomaly scoring, GCR avoids cross-head score comparability issues without requiring end-to-end representation learning. Experiments on MVTec AD and VisA show that geometry-consistent routing substantially improves routing stability and mitigates continual performance collapse, achieving near-zero forgetting while maintaining competitive detection and localization performance. These results indicate that many failures previously attributed to representation forgetting can instead be explained by decision-rule instability in cross-head routing. Code is available at https://github.com/jw-chae/GCR
Abstract:Long chain-of-thought (CoT) reasoning improves the performance of large language models, yet hallucinations in such settings often emerge subtly and propagate across reasoning steps. We suggest that hallucination in long CoT reasoning is better understood as an evolving latent state rather than a one-off erroneous event. Accordingly, we treat step-level hallucination judgments as local observations and introduce a cumulative prefix-level hallucination signal that tracks the global evolution of the reasoning state over the entire trajectory. Overall, our approach enables streaming hallucination detection in long CoT reasoning, providing real-time, interpretable evidence.