EJ
Abstract:We present a novel method for Efficient training with Progressive Activation Sharing (EPAS). This method bridges progressive training paradigm with the phenomenon of redundant QK (or KV ) activations across deeper layers of transformers. EPAS gradually grows a sharing region during training by switching decoder layers to activation sharing mode. This results in throughput increase due to reduced compute. To utilize deeper layer redundancy, the sharing region starts from the deep end of the model and grows towards the shallow end. The EPAS trained models allow for variable region lengths of activation sharing for different compute budgets during inference. Empirical evaluations with QK activation sharing in LLaMA models ranging from 125M to 7B parameters show up to an 11.1% improvement in training throughput and up to a 29% improvement in inference throughput while maintaining similar loss curve to the baseline models. Furthermore, applying EPAS in continual pretraining to transform TinyLLaMA into an attention-sharing model yields up to a 10% improvement in average accuracy over state-of-the-art methods, emphasizing the significance of progressive training in cross layer activation sharing models.
Abstract:Copy trading has become the dominant entry strategy in meme coin markets. However, due to the market's extreme illiquid and volatile nature, the strategy exposes an exploitable attack surface: adversaries deploy manipulative bots to front-run trades, conceal positions, and fabricate sentiment, systematically extracting value from naïve copiers at scale. Despite its prevalence, bot-driven manipulation remains largely unexplored, and no robust defensive framework exists. We propose a manipulation-resistant copy-trading system based on a multi-agent architecture powered by a multi-modal, explainable large language model (LLM). Our system decomposes copy trading into three specialized agents for coin evaluation, wallet selection, and timing assessment. Evaluated on historical data from over 6,000 meme coins, our approach outperforms zero-shot and most statistic-driven baselines in prediction accuracy as well as all baselines in economic performance, achieving an average return of 14% for identified smart-money trades and an estimated copier return of 3% per trade under realistic market frictions. Overall, our results demonstrate the effectiveness of agent-based defenses and predictability of trader profitability in adversarial meme coin markets, providing a practical foundation for robust copy trading.
Abstract:We introduce LongCat-Flash-Thinking-2601, a 560-billion-parameter open-source Mixture-of-Experts (MoE) reasoning model with superior agentic reasoning capability. LongCat-Flash-Thinking-2601 achieves state-of-the-art performance among open-source models on a wide range of agentic benchmarks, including agentic search, agentic tool use, and tool-integrated reasoning. Beyond benchmark performance, the model demonstrates strong generalization to complex tool interactions and robust behavior under noisy real-world environments. Its advanced capability stems from a unified training framework that combines domain-parallel expert training with subsequent fusion, together with an end-to-end co-design of data construction, environments, algorithms, and infrastructure spanning from pre-training to post-training. In particular, the model's strong generalization capability in complex tool-use are driven by our in-depth exploration of environment scaling and principled task construction. To optimize long-tailed, skewed generation and multi-turn agentic interactions, and to enable stable training across over 10,000 environments spanning more than 20 domains, we systematically extend our asynchronous reinforcement learning framework, DORA, for stable and efficient large-scale multi-environment training. Furthermore, recognizing that real-world tasks are inherently noisy, we conduct a systematic analysis and decomposition of real-world noise patterns, and design targeted training procedures to explicitly incorporate such imperfections into the training process, resulting in improved robustness for real-world applications. To further enhance performance on complex reasoning tasks, we introduce a Heavy Thinking mode that enables effective test-time scaling by jointly expanding reasoning depth and width through intensive parallel thinking.
Abstract:The recent surge in popularity of Nano-Banana and Seedream 4.0 underscores the community's strong interest in multi-image composition tasks. Compared to single-image editing, multi-image composition presents significantly greater challenges in terms of consistency and quality, yet existing models have not disclosed specific methodological details for achieving high-quality fusion. Through statistical analysis, we identify Human-Object Interaction (HOI) as the most sought-after category by the community. We therefore systematically analyze and implement a state-of-the-art solution for multi-image composition with a primary focus on HOI-centric tasks. We present Skywork UniPic 3.0, a unified multimodal framework that integrates single-image editing and multi-image composition. Our model supports an arbitrary (1~6) number and resolution of input images, as well as arbitrary output resolutions (within a total pixel budget of 1024x1024). To address the challenges of multi-image composition, we design a comprehensive data collection, filtering, and synthesis pipeline, achieving strong performance with only 700K high-quality training samples. Furthermore, we introduce a novel training paradigm that formulates multi-image composition as a sequence-modeling problem, transforming conditional generation into unified sequence synthesis. To accelerate inference, we integrate trajectory mapping and distribution matching into the post-training stage, enabling the model to produce high-fidelity samples in just 8 steps and achieve a 12.5x speedup over standard synthesis sampling. Skywork UniPic 3.0 achieves state-of-the-art performance on single-image editing benchmark and surpasses both Nano-Banana and Seedream 4.0 on multi-image composition benchmark, thereby validating the effectiveness of our data pipeline and training paradigm. Code, models and dataset are publicly available.
Abstract:The rise of live streaming has transformed online interaction, enabling massive real-time engagement but also exposing platforms to complex risks such as scams and coordinated malicious behaviors. Detecting these risks is challenging because harmful actions often accumulate gradually and recur across seemingly unrelated streams. To address this, we propose CS-VAR (Cross-Session Evidence-Aware Retrieval-Augmented Detector) for live streaming risk assessment. In CS-VAR, a lightweight, domain-specific model performs fast session-level risk inference, guided during training by a Large Language Model (LLM) that reasons over retrieved cross-session behavioral evidence and transfers its local-to-global insights to the small model. This design enables the small model to recognize recurring patterns across streams, perform structured risk assessment, and maintain efficiency for real-time deployment. Extensive offline experiments on large-scale industrial datasets, combined with online validation, demonstrate the state-of-the-art performance of CS-VAR. Furthermore, CS-VAR provides interpretable, localized signals that effectively empower real-world moderation for live streaming.
Abstract:Parkour tasks for quadrupeds have emerged as a promising benchmark for agile locomotion. While human athletes can effectively perceive environmental characteristics to select appropriate footholds for obstacle traversal, endowing legged robots with similar perceptual reasoning remains a significant challenge. Existing methods often rely on hierarchical controllers that follow pre-computed footholds, thereby constraining the robot's real-time adaptability and the exploratory potential of reinforcement learning. To overcome these challenges, we present PUMA, an end-to-end learning framework that integrates visual perception and foothold priors into a single-stage training process. This approach leverages terrain features to estimate egocentric polar foothold priors, composed of relative distance and heading, guiding the robot in active posture adaptation for parkour tasks. Extensive experiments conducted in simulation and real-world environments across various discrete complex terrains, demonstrate PUMA's exceptional agility and robustness in challenging scenarios.
Abstract:In narrow, unstructured underwater environments such as environmental monitoring and minimally invasive medical procedures, micro soft robots exhibit unique advantages due to their flexible movement capabilities and small size. At the same time, applying bionic technology to the structural design of micro soft robots can significantly improve their swimming performance. However, limited by their miniaturization, these robots are difficult to power internally and usually adopt a wireless power supply method. This study designs and fabricates a magnetically responsive, cownose ray-inspired micro soft robot based on the swimming principle of the cownose ray. The robot is made of a certain proportion of NdFeB and PDMS. Then, a three-dimensional Helmholtz coil is used to generate an oscillating harmonic magnetic field to conduct swimming experiments on the robot, exploring the influence of magnetic field parameters on the robot's swimming performance. The experimental results show that the swimming speed is the fastest at B = 5 mT and f = 11 Hz, reaching 5.25 mm/s, which is about 0.5 body lengths per second. In addition, by adjusting the current direction and frequency of the coil, the robot can perform different swimming modes such as straight swimming, turning swimming, and directional swimming. By employing a stepwise adjustment method, the impact of response errors on the robot's trajectory can be effectively reduced. This study demonstrates a method for magnetically driven micro soft robots, laying a foundation for the application of wireless-driven robots in underwater narrow spaces.
Abstract:Software systems that run for long periods often suffer from software aging, which is typically caused by Aging-Related Bugs (ARBs). To mitigate the risk of ARBs early in the development phase, ARB prediction has been introduced into software aging research. However, due to the difficulty of collecting ARBs, within-project ARB prediction faces the challenge of data scarcity, leading to the proposal of cross-project ARB prediction. This task faces two major challenges: 1) domain adaptation issue caused by distribution difference between source and target projects; and 2) severe class imbalance between ARB-prone and ARB-free samples. Although various methods have been proposed for cross-project ARB prediction, existing approaches treat the input metrics independently and often neglect the rich inter-metric dependencies, which can lead to overlapping information and misjudgment of metric importance, potentially affecting the model's performance. Moreover, they typically use cross-entropy as the loss function during training, which cannot distinguish the difficulty of sample classification. To overcome these limitations, we propose ARFT-Transformer, a transformer-based cross-project ARB prediction framework that introduces a metric-level multi-head attention mechanism to capture metric interactions and incorporates Focal Loss function to effectively handle class imbalance. Experiments conducted on three large-scale open-source projects demonstrate that ARFT-Transformer on average outperforms state-of-the-art cross-project ARB prediction methods in both single-source and multi-source cases, achieving up to a 29.54% and 19.92% improvement in Balance metric.
Abstract:Contrastive language-audio pretraining (CLAP) has achieved notable success in learning semantically rich audio representations and is widely adopted for various audio-related tasks. However, current CLAP models face several key limitations. First, they are typically trained on relatively small datasets, often comprising a few million audio samples. Second, existing CLAP models are restricted to short and fixed duration, which constrains their usage in real-world scenarios with variable-duration audio. Third, the standard contrastive training objective operates on global representations, which may hinder the learning of dense, fine-grained audio features. To address these challenges, we introduce Scalable Language-Audio Pretraining (SLAP), which scales language-audio pretraining to 109 million audio-text pairs with variable audio durations and incorporates multiple training objectives. SLAP unifies contrastive loss with additional self-supervised and captioning losses in a single-stage training, facilitating the learning of richer dense audio representations. The proposed SLAP model achieves new state-of-the-art performance on audio-text retrieval and zero-shot audio classification tasks, demonstrating its effectiveness across diverse benchmarks.
Abstract:Autoregressive (AR) models excel at generating temporally coherent audio by producing tokens sequentially, yet they often falter in faithfully following complex textual prompts, especially those describing complex sound events. We uncover a surprising capability in AR audio generators: their early prefix tokens implicitly encode global semantic attributes of the final output, such as event count and sound-object category, revealing a form of implicit planning. Building on this insight, we propose Plan-Critic, a lightweight auxiliary model trained with a Generalized Advantage Estimation (GAE)-inspired objective to predict final instruction-following quality from partial generations. At inference time, Plan-Critic enables guided exploration: it evaluates candidate prefixes early, prunes low-fidelity trajectories, and reallocates computation to high-potential planning seeds. Our Plan-Critic-guided sampling achieves up to a 10-point improvement in CLAP score over the AR baseline-establishing a new state of the art in AR text-to-audio generation-while maintaining computational parity with standard best-of-N decoding. This work bridges the gap between causal generation and global semantic alignment, demonstrating that even strictly autoregressive models can plan ahead.