Abstract:Detecting traffic signs effectively under low-light conditions remains a significant challenge. To address this issue, we propose YOLO-LLTS, an end-to-end real-time traffic sign detection algorithm specifically designed for low-light environments. Firstly, we introduce the High-Resolution Feature Map for Small Object Detection (HRFM-TOD) module to address indistinct small-object features in low-light scenarios. By leveraging high-resolution feature maps, HRFM-TOD effectively mitigates the feature dilution problem encountered in conventional PANet frameworks, thereby enhancing both detection accuracy and inference speed. Secondly, we develop the Multi-branch Feature Interaction Attention (MFIA) module, which facilitates deep feature interaction across multiple receptive fields in both channel and spatial dimensions, significantly improving the model's information extraction capabilities. Finally, we propose the Prior-Guided Enhancement Module (PGFE) to tackle common image quality challenges in low-light environments, such as noise, low contrast, and blurriness. This module employs prior knowledge to enrich image details and enhance visibility, substantially boosting detection performance. To support this research, we construct a novel dataset, the Chinese Nighttime Traffic Sign Sample Set (CNTSSS), covering diverse nighttime scenarios, including urban, highway, and rural environments under varying weather conditions. Experimental evaluations demonstrate that YOLO-LLTS achieves state-of-the-art performance, outperforming the previous best methods by 2.7% mAP50 and 1.6% mAP50:95 on TT100K-night, 1.3% mAP50 and 1.9% mAP50:95 on CNTSSS, and achieving superior results on the CCTSDB2021 dataset. Moreover, deployment experiments on edge devices confirm the real-time applicability and effectiveness of our proposed approach.
Abstract:Virtual Try-On (VTON) is a transformative technology in e-commerce and fashion design, enabling realistic digital visualization of clothing on individuals. In this work, we propose VTON 360, a novel 3D VTON method that addresses the open challenge of achieving high-fidelity VTON that supports any-view rendering. Specifically, we leverage the equivalence between a 3D model and its rendered multi-view 2D images, and reformulate 3D VTON as an extension of 2D VTON that ensures 3D consistent results across multiple views. To achieve this, we extend 2D VTON models to include multi-view garments and clothing-agnostic human body images as input, and propose several novel techniques to enhance them, including: i) a pseudo-3D pose representation using normal maps derived from the SMPL-X 3D human model, ii) a multi-view spatial attention mechanism that models the correlations between features from different viewing angles, and iii) a multi-view CLIP embedding that enhances the garment CLIP features used in 2D VTON with camera information. Extensive experiments on large-scale real datasets and clothing images from e-commerce platforms demonstrate the effectiveness of our approach. Project page: https://scnuhealthy.github.io/VTON360.
Abstract:Embodied Question Answering (EQA) is a challenging task in embodied intelligence that requires agents to dynamically explore 3D environments, actively gather visual information, and perform multi-step reasoning to answer questions. However, current EQA approaches suffer from critical limitations in exploration efficiency, dataset design, and evaluation metrics. Moreover, existing datasets often introduce biases or prior knowledge, leading to disembodied reasoning, while frontier-based exploration strategies struggle in cluttered environments and fail to ensure fine-grained exploration of task-relevant areas. To address these challenges, we construct the EXPloration-awaRe Embodied queStion anSwering Benchmark (EXPRESS-Bench), the largest dataset designed specifically to evaluate both exploration and reasoning capabilities. EXPRESS-Bench consists of 777 exploration trajectories and 2,044 question-trajectory pairs. To improve exploration efficiency, we propose Fine-EQA, a hybrid exploration model that integrates frontier-based and goal-oriented navigation to guide agents toward task-relevant regions more effectively. Additionally, we introduce a novel evaluation metric, Exploration-Answer Consistency (EAC), which ensures faithful assessment by measuring the alignment between answer grounding and exploration reliability. Extensive experimental comparisons with state-of-the-art EQA models demonstrate the effectiveness of our EXPRESS-Bench in advancing embodied exploration and question reasoning.
Abstract:3D Question Answering (3D QA) requires the model to comprehensively understand its situated 3D scene described by the text, then reason about its surrounding environment and answer a question under that situation. However, existing methods usually rely on global scene perception from pure 3D point clouds and overlook the importance of rich local texture details from multi-view images. Moreover, due to the inherent noise in camera poses and complex occlusions, there exists significant feature degradation and reduced feature robustness problems when aligning 3D point cloud with multi-view images. In this paper, we propose a Dual-vision Scene Perception Network (DSPNet), to comprehensively integrate multi-view and point cloud features to improve robustness in 3D QA. Our Text-guided Multi-view Fusion (TGMF) module prioritizes image views that closely match the semantic content of the text. To adaptively fuse back-projected multi-view images with point cloud features, we design the Adaptive Dual-vision Perception (ADVP) module, enhancing 3D scene comprehension. Additionally, our Multimodal Context-guided Reasoning (MCGR) module facilitates robust reasoning by integrating contextual information across visual and linguistic modalities. Experimental results on SQA3D and ScanQA datasets demonstrate the superiority of our DSPNet. Codes will be available at https://github.com/LZ-CH/DSPNet.
Abstract:Alpha mining, a critical component in quantitative investment, focuses on discovering predictive signals for future asset returns in increasingly complex financial markets. However, the pervasive issue of alpha decay, where factors lose their predictive power over time, poses a significant challenge for alpha mining. Traditional methods like genetic programming face rapid alpha decay from overfitting and complexity, while approaches driven by Large Language Models (LLMs), despite their promise, often rely too heavily on existing knowledge, creating homogeneous factors that worsen crowding and accelerate decay. To address this challenge, we propose AlphaAgent, an autonomous framework that effectively integrates LLM agents with ad hoc regularizations for mining decay-resistant alpha factors. AlphaAgent employs three key mechanisms: (i) originality enforcement through a similarity measure based on abstract syntax trees (ASTs) against existing alphas, (ii) hypothesis-factor alignment via LLM-evaluated semantic consistency between market hypotheses and generated factors, and (iii) complexity control via AST-based structural constraints, preventing over-engineered constructions that are prone to overfitting. These mechanisms collectively guide the alpha generation process to balance originality, financial rationale, and adaptability to evolving market conditions, mitigating the risk of alpha decay. Extensive evaluations show that AlphaAgent outperforms traditional and LLM-based methods in mitigating alpha decay across bull and bear markets, consistently delivering significant alpha in Chinese CSI 500 and US S&P 500 markets over the past four years. Notably, AlphaAgent showcases remarkable resistance to alpha decay, elevating the potential for yielding powerful factors.
Abstract:Infrared and visible image fusion (IVIF) is increasingly applied in critical fields such as video surveillance and autonomous driving systems. Significant progress has been made in deep learning-based fusion methods. However, these models frequently encounter out-of-distribution (OOD) scenes in real-world applications, which severely impact their performance and reliability. Therefore, addressing the challenge of OOD data is crucial for the safe deployment of these models in open-world environments. Unlike existing research, our focus is on the challenges posed by OOD data in real-world applications and on enhancing the robustness and generalization of models. In this paper, we propose an infrared-visible fusion framework based on Multi-View Augmentation. For external data augmentation, Top-k Selective Vision Alignment is employed to mitigate distribution shifts between datasets by performing RGB-wise transformations on visible images. This strategy effectively introduces augmented samples, enhancing the adaptability of the model to complex real-world scenarios. Additionally, for internal data augmentation, self-supervised learning is established using Weak-Aggressive Augmentation. This enables the model to learn more robust and general feature representations during the fusion process, thereby improving robustness and generalization. Extensive experiments demonstrate that the proposed method exhibits superior performance and robustness across various conditions and environments. Our approach significantly enhances the reliability and stability of IVIF tasks in practical applications.
Abstract:In this paper, we find that the complexity of interactions encoded by a deep neural network (DNN) can explain its generalization power. We also discover that the confusing samples of a DNN, which are represented by non-generalizable interactions, are determined by its low-layer parameters. In comparison, other factors, such as high-layer parameters and network architecture, have much less impact on the composition of confusing samples. Two DNNs with different low-layer parameters usually have fully different sets of confusing samples, even though they have similar performance. This finding extends the understanding of the lottery ticket hypothesis, and well explains distinctive representation power of different DNNs.
Abstract:Video generative models pre-trained on large-scale internet datasets have achieved remarkable success, excelling at producing realistic synthetic videos. However, they often generate clips based on static prompts (e.g., text or images), limiting their ability to model interactive and dynamic scenarios. In this paper, we propose Dynamic World Simulation (DWS), a novel approach to transform pre-trained video generative models into controllable world simulators capable of executing specified action trajectories. To achieve precise alignment between conditioned actions and generated visual changes, we introduce a lightweight, universal action-conditioned module that seamlessly integrates into any existing model. Instead of focusing on complex visual details, we demonstrate that consistent dynamic transition modeling is the key to building powerful world simulators. Building upon this insight, we further introduce a motion-reinforced loss that enhances action controllability by compelling the model to capture dynamic changes more effectively. Experiments demonstrate that DWS can be versatilely applied to both diffusion and autoregressive transformer models, achieving significant improvements in generating action-controllable, dynamically consistent videos across games and robotics domains. Moreover, to facilitate the applications of the learned world simulator in downstream tasks such as model-based reinforcement learning, we propose prioritized imagination to improve sample efficiency, demonstrating competitive performance compared with state-of-the-art methods.
Abstract:Groundbreaking advancements in text-to-image generation have recently been achieved with the emergence of diffusion models. These models exhibit a remarkable ability to generate highly artistic and intricately detailed images based on textual prompts. However, obtaining desired generation outcomes often necessitates repetitive trials of manipulating text prompts just like casting spells on a magic mirror, and the reason behind that is the limited capability of semantic understanding inherent in current image generation models. Specifically, existing diffusion models encode the text prompt input with a pre-trained encoder structure, which is usually trained on a limited number of image-caption pairs. The state-of-the-art large language models (LLMs) based on the decoder-only structure have shown a powerful semantic understanding capability as their architectures are more suitable for training on very large-scale unlabeled data. In this work, we propose to enhance text-to-image diffusion models by borrowing the strength of semantic understanding from large language models, and devise a simple yet effective adapter to allow the diffusion models to be compatible with the decoder-only structure. Meanwhile, we also provide a supporting theoretical analysis with various architectures (e.g., encoder-only, encoder-decoder, and decoder-only), and conduct extensive empirical evaluations to verify its effectiveness. The experimental results show that the enhanced models with our adapter module are superior to the stat-of-the-art models in terms of text-to-image generation quality and reliability.
Abstract:Recently, numerous benchmarks have been developed to evaluate the logical reasoning abilities of large language models (LLMs). However, assessing the equally important creative capabilities of LLMs is challenging due to the subjective, diverse, and data-scarce nature of creativity, especially in multimodal scenarios. In this paper, we consider the comprehensive pipeline for evaluating the creativity of multimodal LLMs, with a focus on suitable evaluation platforms and methodologies. First, we find the Oogiri game, a creativity-driven task requiring humor, associative thinking, and the ability to produce unexpected responses to text, images, or both. This game aligns well with the input-output structure of modern multimodal LLMs and benefits from a rich repository of high-quality, human-annotated creative responses, making it an ideal platform for studying LLM creativity. Next, beyond using the Oogiri game for standard evaluations like ranking and selection, we propose LoTbench, an interactive, causality-aware evaluation framework, to further address some intrinsic risks in standard evaluations, such as information leakage and limited interpretability. The proposed LoTbench not only quantifies LLM creativity more effectively but also visualizes the underlying creative thought processes. Our results show that while most LLMs exhibit constrained creativity, the performance gap between LLMs and humans is not insurmountable. Furthermore, we observe a strong correlation between results from the multimodal cognition benchmark MMMU and LoTbench, but only a weak connection with traditional creativity metrics. This suggests that LoTbench better aligns with human cognitive theories, highlighting cognition as a critical foundation in the early stages of creativity and enabling the bridging of diverse concepts. https://lotbench.github.io