Abstract:Diffusion Large Language Models (DLLMs) have emerged as a powerful alternative to autoregressive models, enabling parallel token generation across multiple positions. However, preference alignment of DLLMs remains challenging due to high variance introduced by Evidence Lower Bound (ELBO)-based likelihood estimation. In this work, we propose AR-MAP, a novel transfer learning framework that leverages preference-aligned autoregressive LLMs (AR-LLMs) as implicit teachers for DLLM alignment. We reveal that DLLMs can effectively absorb alignment knowledge from AR-LLMs through simple weight scaling, exploiting the shared architectural structure between these divergent generation paradigms. Crucially, our approach circumvents the high variance and computational overhead of direct DLLM alignment and comprehensive experiments across diverse preference alignment tasks demonstrate that AR-MAP achieves competitive or superior performance compared to existing DLLM-specific alignment methods, achieving 69.08\% average score across all tasks and models. Our Code is available at https://github.com/AMAP-ML/AR-MAP.
Abstract:World models are essential for autonomous robotic planning. However, the substantial computational overhead of existing dense Transformerbased models significantly hinders real-time deployment. To address this efficiency-performance bottleneck, we introduce DDP-WM, a novel world model centered on the principle of Disentangled Dynamics Prediction (DDP). We hypothesize that latent state evolution in observed scenes is heterogeneous and can be decomposed into sparse primary dynamics driven by physical interactions and secondary context-driven background updates. DDP-WM realizes this decomposition through an architecture that integrates efficient historical processing with dynamic localization to isolate primary dynamics. By employing a crossattention mechanism for background updates, the framework optimizes resource allocation and provides a smooth optimization landscape for planners. Extensive experiments demonstrate that DDP-WM achieves significant efficiency and performance across diverse tasks, including navigation, precise tabletop manipulation, and complex deformable or multi-body interactions. Specifically, on the challenging Push-T task, DDP-WM achieves an approximately 9 times inference speedup and improves the MPC success rate from 90% to98% compared to state-of-the-art dense models. The results establish a promising path for developing efficient, high-fidelity world models. Codes will be available at https://github.com/HCPLab-SYSU/DDP-WM.
Abstract:Current AI-Generated Image (AIGI) detection approaches predominantly rely on binary classification to distinguish real from synthetic images, often lacking interpretable or convincing evidence to substantiate their decisions. This limitation stems from existing AIGI detection benchmarks, which, despite featuring a broad collection of synthetic images, remain restricted in their coverage of artifact diversity and lack detailed, localized annotations. To bridge this gap, we introduce a fine-grained benchmark towards eXplainable AI-Generated image Detection, named X-AIGD, which provides pixel-level, categorized annotations of perceptual artifacts, spanning low-level distortions, high-level semantics, and cognitive-level counterfactuals. These comprehensive annotations facilitate fine-grained interpretability evaluation and deeper insight into model decision-making processes. Our extensive investigation using X-AIGD provides several key insights: (1) Existing AIGI detectors demonstrate negligible reliance on perceptual artifacts, even at the most basic distortion level. (2) While AIGI detectors can be trained to identify specific artifacts, they still substantially base their judgment on uninterpretable features. (3) Explicitly aligning model attention with artifact regions can increase the interpretability and generalization of detectors. The data and code are available at: https://github.com/Coxy7/X-AIGD.
Abstract:Multimodal Large Language Models (MLLMs) have achieved remarkable progress in visual recognition and semantic understanding. Nevertheless, their ability to perform precise compositional spatial reasoning remains largely unexplored. Existing benchmarks often involve relatively simple tasks and rely on semantic approximations or coarse relative positioning, while their evaluation metrics are typically limited and lack rigorous mathematical formulations. To bridge this gap, we introduce TangramPuzzle, a geometry-grounded benchmark designed to evaluate compositional spatial reasoning through the lens of the classic Tangram game. We propose the Tangram Construction Expression (TCE), a symbolic geometric framework that grounds tangram assemblies in exact, machine-verifiable coordinate specifications, to mitigate the ambiguity of visual approximation. We design two complementary tasks: Outline Prediction, which demands inferring global shapes from local components, and End-to-End Code Generation, which requires solving inverse geometric assembly problems. We conduct extensive evaluation experiments on advanced open-source and proprietary models, revealing an interesting insight: MLLMs tend to prioritize matching the target silhouette while neglecting geometric constraints, leading to distortions or deformations of the pieces.
Abstract:Chain-of-Thought reasoning has significantly enhanced the problem-solving capabilities of Large Language Models. Unfortunately, current models generate reasoning steps sequentially without foresight, often becoming trapped in suboptimal reasoning paths with redundant steps. In contrast, we introduce Neural Chain-of-Thought Search (NCoTS), a framework that reformulates reasoning as a dynamic search for the optimal thinking strategy. By quantitatively characterizing the solution space, we reveal the existence of sparse superior reasoning paths that are simultaneously more accurate and concise than standard outputs. Our method actively navigates towards these paths by evaluating candidate reasoning operators using a dual-factor heuristic that optimizes for both correctness and computational cost. Consequently, NCoTS achieves a Pareto improvement across diverse reasoning benchmarks, boosting accuracy by over 3.5% while reducing generation length by over 22%. Our code and data are available at https://github.com/MilkThink-Lab/Neural-CoT-Search.
Abstract:Large Audio Language Models (LALMs) have been widely applied in real-time scenarios, such as in-car assistants and online meeting comprehension. In practice, audio inputs are often corrupted by device and environmental noise, leading to performance degradation. However, existing LALM studies on noise lack quantitative analysis and rely mainly on intuition and empirical observation, thus failing to understand practical robustness. To address this issue, we introduce Signal Embedding Energy (SEE), a method for quantifying the impact of noise intensity on LALM inputs, enabling the differentiation of LALM robustness in real-world deployments. SEE introduces a perspective based on structured activation subspaces derived from the model's internal representations, which more accurately captures its perception of noise than raw audio features. Across experiments, SEE exhibits a strong correlation with LALM performance, achieving a correlation of 0.98. Surprisingly, traditional audio denoising methods are only marginally effective for LALMs, and, in some cases, even increase SEE and impair performance. This suggests a mismatch between speech-centric denoising objectives and the noise sensitivity of modern LALMs. Therefore, we propose a mitigation strategy derived from SEE to denoise LALM inputs, outperforming existing denoising methods. This paper introduces a novel metric for noise quantification in LALMs, providing guidance for robustness improvements in real-world deployments.
Abstract:Retargeting human motion to heterogeneous robots is a fundamental challenge in robotics, primarily due to the severe kinematic and dynamic discrepancies between varying embodiments. Existing solutions typically resort to training embodiment-specific models, which scales poorly and fails to exploit shared motion semantics. To address this, we present AdaMorph, a unified neural retargeting framework that enables a single model to adapt human motion to diverse robot morphologies. Our approach treats retargeting as a conditional generation task. We map human motion into a morphology-agnostic latent intent space and utilize a dual-purpose prompting mechanism to condition the generation. Instead of simple input concatenation, we leverage Adaptive Layer Normalization (AdaLN) to dynamically modulate the decoder's feature space based on embodiment constraints. Furthermore, we enforce physical plausibility through a curriculum-based training objective that ensures orientation and trajectory consistency via integration. Experimental results on 12 distinct humanoid robots demonstrate that AdaMorph effectively unifies control across heterogeneous topologies, exhibiting strong zero-shot generalization to unseen complex motions while preserving the dynamic essence of the source behaviors.
Abstract:Vision-Language-Action (VLA) models have demonstrated impressive capabilities in generalized robotic control; however, they remain notoriously brittle to linguistic perturbations. We identify a critical ``modality collapse'' phenomenon where strong visual priors overwhelm sparse linguistic signals, causing agents to overfit to specific instruction phrasings while ignoring the underlying semantic intent. To address this, we propose \textbf{Residual Semantic Steering (RSS)}, a probabilistic framework that disentangles physical affordance from semantic execution. RSS introduces two theoretical innovations: (1) \textbf{Monte Carlo Syntactic Integration}, which approximates the true semantic posterior via dense, LLM-driven distributional expansion, and (2) \textbf{Residual Affordance Steering}, a dual-stream decoding mechanism that explicitly isolates the causal influence of language by subtracting the visual affordance prior. Theoretical analysis suggests that RSS effectively maximizes the mutual information between action and intent while suppressing visual distractors. Empirical results across diverse manipulation benchmarks demonstrate that RSS achieves state-of-the-art robustness, maintaining performance even under adversarial linguistic perturbations.
Abstract:While Audio Large Language Models (ALLMs) have achieved remarkable progress in understanding and generation, their potential privacy implications remain largely unexplored. This paper takes the first step to investigate whether ALLMs inadvertently leak user privacy solely through acoustic voiceprints and introduces $\textit{HearSay}$, a comprehensive benchmark constructed from over 22,000 real-world audio clips. To ensure data quality, the benchmark is meticulously curated through a rigorous pipeline involving automated profiling and human verification, guaranteeing that all privacy labels are grounded in factual records. Extensive experiments on $\textit{HearSay}$ yield three critical findings: $\textbf{Significant Privacy Leakage}$: ALLMs inherently extract private attributes from voiceprints, reaching 92.89% accuracy on gender and effectively profiling social attributes. $\textbf{Insufficient Safety Mechanisms}$: Alarmingly, existing safeguards are severely inadequate; most models fail to refuse privacy-intruding requests, exhibiting near-zero refusal rates for physiological traits. $\textbf{Reasoning Amplifies Risk}$: Chain-of-Thought (CoT) reasoning exacerbates privacy risks in capable models by uncovering deeper acoustic correlations. These findings expose critical vulnerabilities in ALLMs, underscoring the urgent need for targeted privacy alignment. The codes and dataset are available at https://github.com/JinWang79/HearSay_Benchmark
Abstract:The bifurcation of generative modeling into autoregressive approaches for discrete data (text) and diffusion approaches for continuous data (images) hinders the development of truly unified multimodal systems. While Masked Language Models (MLMs) offer efficient bidirectional context, they traditionally lack the generative fidelity of autoregressive models and the semantic continuity of diffusion models. Furthermore, extending masked generation to multimodal settings introduces severe alignment challenges and training instability. In this work, we propose \textbf{CoM-DAD} (\textbf{Co}upled \textbf{M}anifold \textbf{D}iscrete \textbf{A}bsorbing \textbf{D}iffusion), a novel probabilistic framework that reformulates multimodal generation as a hierarchical dual-process. CoM-DAD decouples high-level semantic planning from low-level token synthesis. First, we model the semantic manifold via a continuous latent diffusion process; second, we treat token generation as a discrete absorbing diffusion process, regulated by a \textbf{Variable-Rate Noise Schedule}, conditioned on these evolving semantic priors. Crucially, we introduce a \textbf{Stochastic Mixed-Modal Transport} strategy that aligns disparate modalities without requiring heavy contrastive dual-encoders. Our method demonstrates superior stability over standard masked modeling, establishing a new paradigm for scalable, unified text-image generation.