Abstract:As large multimodal models (LMMs) are increasingly deployed across diverse applications, the need for adaptable, real-world model ranking has become paramount. Traditional evaluation methods are largely dataset-centric, relying on fixed, labeled datasets and supervised metrics, which are resource-intensive and may lack generalizability to novel scenarios, highlighting the importance of unsupervised ranking. In this work, we explore unsupervised model ranking for LMMs by leveraging their uncertainty signals, such as softmax probabilities. We evaluate state-of-the-art LMMs (e.g., LLaVA) across visual question answering benchmarks, analyzing how uncertainty-based metrics can reflect model performance. Our findings show that uncertainty scores derived from softmax distributions provide a robust, consistent basis for ranking models across varied tasks. This finding enables the ranking of LMMs on real-world, unlabeled data for visual question answering, providing a practical approach for selecting models across diverse domains without requiring manual annotation.
Abstract:Assembling furniture amounts to solving the discrete-continuous optimization task of selecting the furniture parts to assemble and estimating their connecting poses in a physically realistic manner. The problem is hampered by its combinatorially large yet sparse solution space thus making learning to assemble a challenging task for current machine learning models. In this paper, we attempt to solve this task by leveraging the assembly instructions provided in diagrammatic manuals that typically accompany the furniture parts. Our key insight is to use the cues in these diagrams to split the problem into discrete and continuous phases. Specifically, we present Manual-PA, a transformer-based instruction Manual-guided 3D Part Assembly framework that learns to semantically align 3D parts with their illustrations in the manuals using a contrastive learning backbone towards predicting the assembly order and infers the 6D pose of each part via relating it to the final furniture depicted in the manual. To validate the efficacy of our method, we conduct experiments on the benchmark PartNet dataset. Our results show that using the diagrams and the order of the parts lead to significant improvements in assembly performance against the state of the art. Further, Manual-PA demonstrates strong generalization to real-world IKEA furniture assembly on the IKEA-Manual dataset.
Abstract:Contrastive Language-Image Pre-training (CLIP) models have shown significant potential, particularly in zero-shot classification across diverse distribution shifts. Building on existing evaluations of overall classification robustness, this work aims to provide a more comprehensive assessment of CLIP by introducing several new perspectives. First, we investigate their robustness to variations in specific visual factors. Second, we assess two critical safety objectives--confidence uncertainty and out-of-distribution detection--beyond mere classification accuracy. Third, we evaluate the finesse with which CLIP models bridge the image and text modalities. Fourth, we extend our examination to 3D awareness in CLIP models, moving beyond traditional 2D image understanding. Finally, we explore the interaction between vision and language encoders within modern large multimodal models (LMMs) that utilize CLIP as the visual backbone, focusing on how this interaction impacts classification robustness. In each aspect, we consider the impact of six factors on CLIP models: model architecture, training distribution, training set size, fine-tuning, contrastive loss, and test-time prompts. Our study uncovers several previously unknown insights into CLIP. For instance, the architecture of the visual encoder in CLIP plays a significant role in their robustness against 3D corruption. CLIP models tend to exhibit a bias towards shape when making predictions. Moreover, this bias tends to diminish after fine-tuning on ImageNet. Vision-language models like LLaVA, leveraging the CLIP vision encoder, could exhibit benefits in classification performance for challenging categories over CLIP alone. Our findings are poised to offer valuable guidance for enhancing the robustness and reliability of CLIP models.
Abstract:This work aims to develop a measure that can accurately rank the performance of various classifiers when they are tested on unlabeled data from out-of-distribution (OOD) distributions. We commence by demonstrating that conventional uncertainty metrics, notably the maximum Softmax prediction probability, possess inherent utility in forecasting model generalization across certain OOD contexts. Building on this insight, we introduce a new measure called Softmax Correlation (SoftmaxCorr). It calculates the cosine similarity between a class-class correlation matrix, constructed from Softmax output vectors across an unlabeled test dataset, and a predefined reference matrix that embodies ideal class correlations. A high resemblance of predictions to the reference matrix signals that the model delivers confident and uniform predictions across all categories, reflecting minimal uncertainty and confusion. Through rigorous evaluation across a suite of datasets, including ImageNet, CIFAR-10, and WILDS, we affirm the predictive validity of SoftmaxCorr in accurately forecasting model performance within both in-distribution (ID) and OOD settings. Furthermore, we discuss the limitations of our proposed measure and suggest avenues for future research.
Abstract:Leveraging the models' outputs, specifically the logits, is a common approach to estimating the test accuracy of a pre-trained neural network on out-of-distribution (OOD) samples without requiring access to the corresponding ground truth labels. Despite their ease of implementation and computational efficiency, current logit-based methods are vulnerable to overconfidence issues, leading to prediction bias, especially under the natural shift. In this work, we first study the relationship between logits and generalization performance from the view of low-density separation assumption. Our findings motivate our proposed method MaNo which (1) applies a data-dependent normalization on the logits to reduce prediction bias, and (2) takes the $L_p$ norm of the matrix of normalized logits as the estimation score. Our theoretical analysis highlights the connection between the provided score and the model's uncertainty. We conduct an extensive empirical study on common unsupervised accuracy estimation benchmarks and demonstrate that MaNo achieves state-of-the-art performance across various architectures in the presence of synthetic, natural, or subpopulation shifts.
Abstract:Contrastive Language-Image Pre-training (CLIP) models have demonstrated remarkable generalization capabilities across multiple challenging distribution shifts. However, there is still much to be explored in terms of their robustness to the variations of specific visual factors. In real-world applications, reliable and safe systems must consider other safety objectives beyond classification accuracy, such as predictive uncertainty. Yet, the effectiveness of CLIP models on such safety-related features is less-explored. Driven by the above, this work comprehensively investigates the safety objectives of CLIP models, specifically focusing on three key properties: resilience to visual factor variations, calibrated uncertainty estimations, and the ability to detect anomalous inputs. To this end, we study 83 CLIP models and 127 ImageNet classifiers. They are diverse in architecture, (pre)training distribution and training strategies. We consider 10 visual factors (e.g., shape and pattern), 5 types of out-of-distribution data, and 8 natural and challenging test conditions with different shift types, such as texture, style, and perturbation shifts. Our study has unveiled several previously unknown insights into CLIP models. For instance, they are not consistently more calibrated than other ImageNet models, which contradicts existing findings. Additionally, our analysis underscores the significance of training source design by showcasing its profound influence on the three safety-related properties. We believe our comprehensive study can shed light on and help guide the development of more robust and reliable CLIP models.
Abstract:Vision--Language Models (VLMs) have emerged as the dominant approach for zero-shot recognition, adept at handling diverse scenarios and significant distribution changes. However, their deployment in risk-sensitive areas requires a deeper understanding of their uncertainty estimation capabilities, a relatively uncharted area. In this study, we explore the calibration properties of VLMs across different architectures, datasets, and training strategies. In particular, we analyze the uncertainty estimation performance of VLMs when calibrated in one domain, label set or hierarchy level, and tested in a different one. Our findings reveal that while VLMs are not inherently calibrated for uncertainty, temperature scaling significantly and consistently improves calibration, even across shifts in distribution and changes in label set. Moreover, VLMs can be calibrated with a very small set of examples. Through detailed experimentation, we highlight the potential applications and importance of our insights, aiming for more reliable and effective use of VLMs in critical, real-world scenarios.
Abstract:In the pursuit of efficient automated content creation, procedural generation, leveraging modifiable parameters and rule-based systems, emerges as a promising approach. Nonetheless, it could be a demanding endeavor, given its intricate nature necessitating a deep understanding of rules, algorithms, and parameters. To reduce workload, we introduce 3D-GPT, a framework utilizing large language models~(LLMs) for instruction-driven 3D modeling. 3D-GPT positions LLMs as proficient problem solvers, dissecting the procedural 3D modeling tasks into accessible segments and appointing the apt agent for each task. 3D-GPT integrates three core agents: the task dispatch agent, the conceptualization agent, and the modeling agent. They collaboratively achieve two objectives. First, it enhances concise initial scene descriptions, evolving them into detailed forms while dynamically adapting the text based on subsequent instructions. Second, it integrates procedural generation, extracting parameter values from enriched text to effortlessly interface with 3D software for asset creation. Our empirical investigations confirm that 3D-GPT not only interprets and executes instructions, delivering reliable results but also collaborates effectively with human designers. Furthermore, it seamlessly integrates with Blender, unlocking expanded manipulation possibilities. Our work highlights the potential of LLMs in 3D modeling, offering a basic framework for future advancements in scene generation and animation.
Abstract:This work investigates dataset vectorization for two dataset-level tasks: assessing training set suitability and test set difficulty. The former measures how suitable a training set is for a target domain, while the latter studies how challenging a test set is for a learned model. Central to the two tasks is measuring the underlying relationship between datasets. This needs a desirable dataset vectorization scheme, which should preserve as much discriminative dataset information as possible so that the distance between the resulting dataset vectors can reflect dataset-to-dataset similarity. To this end, we propose a bag-of-prototypes (BoP) dataset representation that extends the image-level bag consisting of patch descriptors to dataset-level bag consisting of semantic prototypes. Specifically, we develop a codebook consisting of K prototypes clustered from a reference dataset. Given a dataset to be encoded, we quantize each of its image features to a certain prototype in the codebook and obtain a K-dimensional histogram. Without assuming access to dataset labels, the BoP representation provides a rich characterization of the dataset semantic distribution. Furthermore, BoP representations cooperate well with Jensen-Shannon divergence for measuring dataset-to-dataset similarity. Although very simple, BoP consistently shows its advantage over existing representations on a series of benchmarks for two dataset-level tasks.
Abstract:Model calibration usually requires optimizing some parameters (e.g., temperature) w.r.t an objective function (e.g., negative log-likelihood). In this paper, we report a plain, important but often neglected fact that the objective function is influenced by calibration set difficulty, i.e., the ratio of the number of incorrectly classified samples to that of correctly classified samples. If a test set has a drastically different difficulty level from the calibration set, the optimal calibration parameters of the two datasets would be different. In other words, a calibrator optimal on the calibration set would be suboptimal on the OOD test set and thus has degraded performance. With this knowledge, we propose a simple and effective method named adaptive calibrator ensemble (ACE) to calibrate OOD datasets whose difficulty is usually higher than the calibration set. Specifically, two calibration functions are trained, one for in-distribution data (low difficulty), and the other for severely OOD data (high difficulty). To achieve desirable calibration on a new OOD dataset, ACE uses an adaptive weighting method that strikes a balance between the two extreme functions. When plugged in, ACE generally improves the performance of a few state-of-the-art calibration schemes on a series of OOD benchmarks. Importantly, such improvement does not come at the cost of the in-distribution calibration accuracy.