Abstract:Predicting critical transitions in complex systems, such as epileptic seizures in the brain, represents a major challenge in scientific research. The high-dimensional characteristics and hidden critical signals further complicate early-warning tasks. This study proposes a novel early-warning framework that integrates manifold learning with stochastic dynamical system modeling. Through systematic comparison, six methods including diffusion maps (DM) are selected to construct low-dimensional representations. Based on these, a data-driven stochastic differential equation model is established to robustly estimate the probability evolution scoring function of the system. Building on this, a new Score Function (SF) indicator is defined by incorporating Schrödinger bridge theory to quantify the likelihood of significant state transitions in the system. Experiments demonstrate that this indicator exhibits higher sensitivity and robustness in epilepsy prediction, enables earlier identification of critical points, and clearly captures dynamic features across various stages before and after seizure onset. This work provides a systematic theoretical framework and practical methodology for extracting early-warning signals from high-dimensional data.
Abstract:Humanoid robots hold great potential for diverse interactions and daily service tasks within human-centered environments, necessitating controllers that seamlessly integrate precise locomotion with dexterous manipulation. However, most existing whole-body controllers lack exteroceptive awareness of the surrounding environment, rendering them insufficient for stable task execution in complex, unstructured scenarios.To address this challenge, we propose PILOT, a unified single-stage reinforcement learning (RL) framework tailored for perceptive loco-manipulation, which synergizes perceptive locomotion and expansive whole-body control within a single policy. To enhance terrain awareness and ensure precise foot placement, we design a cross-modal context encoder that fuses prediction-based proprioceptive features with attention-based perceptive representations. Furthermore, we introduce a Mixture-of-Experts (MoE) policy architecture to coordinate diverse motor skills, facilitating better specialization across distinct motion patterns. Extensive experiments in both simulation and on the physical Unitree G1 humanoid robot validate the efficacy of our framework. PILOT demonstrates superior stability, command tracking precision, and terrain traversability compared to existing baselines. These results highlight its potential to serve as a robust, foundational low-level controller for loco-manipulation in unstructured scenes.
Abstract:Neural Audio Codecs (NACs) can reduce transmission overhead by performing compact compression and reconstruction, which also aim to bridge the gap between continuous and discrete signals. Existing NACs can be divided into two categories: multi-codebook and single-codebook codecs. Multi-codebook codecs face challenges such as structural complexity and difficulty in adapting to downstream tasks, while single-codebook codecs, though structurally simpler, suffer from low-fidelity, ineffective modeling of unified audio, and an inability to support modeling of high-frequency audio. We propose the UniSRCodec, a single-codebook codec capable of supporting high sampling rate, low-bandwidth, high fidelity, and unified. We analyze the inefficiency of waveform-based compression and introduce the time and frequency compression method using the Mel-spectrogram, and cooperate with a Vocoder to recover the phase information of the original audio. Moreover, we propose a sub-band reconstruction technique to achieve high-quality compression across both low and high frequency bands. Subjective and objective experimental results demonstrate that UniSRCodec achieves state-of-the-art (SOTA) performance among cross-domain single-codebook codecs with only a token rate of 40, and its reconstruction quality is comparable to that of certain multi-codebook methods. Our demo page is available at https://wxzyd123.github.io/unisrcodec.
Abstract:The development of audio foundation models has accelerated rapidly since the emergence of GPT-4o. However, the lack of comprehensive evaluation has become a critical bottleneck for further progress in the field, particularly in audio generation. Current audio evaluation faces three major challenges: (1) audio evaluation lacks a unified framework, with datasets and code scattered across various sources, hindering fair and efficient cross-model comparison;(2) audio codecs, as a key component of audio foundation models, lack a widely accepted and holistic evaluation methodology; (3) existing speech benchmarks are heavily reliant on English, making it challenging to objectively assess models' performance on Chinese. To address the first issue, we introduce UltraEval-Audio, a unified evaluation framework for audio foundation models, specifically designed for both audio understanding and generation tasks. UltraEval-Audio features a modular architecture, supporting 10 languages and 14 core task categories, while seamlessly integrating 24 mainstream models and 36 authoritative benchmarks. To enhance research efficiency, the framework provides a one-command evaluation feature, accompanied by real-time public leaderboards. For the second challenge, UltraEval-Audio adopts a novel comprehensive evaluation scheme for audio codecs, evaluating performance across three key dimensions: semantic accuracy, timbre fidelity, and acoustic quality. To address the third issue, we propose two new Chinese benchmarks, SpeechCMMLU and SpeechHSK, designed to assess Chinese knowledge proficiency and language fluency. We wish that UltraEval-Audio will provide both academia and industry with a transparent, efficient, and fair platform for comparison of audio models. Our code, benchmarks, and leaderboards are available at https://github.com/OpenBMB/UltraEval-Audio.
Abstract:Analyzing hand-object interaction in egocentric vision facilitates VR/AR applications and human-robot policy transfer. Existing research has mostly focused on modeling the behavior paradigm of interactive actions (i.e., ``how to interact''). However, the more challenging and fine-grained problem of capturing the critical moments of contact and separation between the hand and the target object (i.e., ``when to interact'') is still underexplored, which is crucial for immersive interactive experiences in mixed reality and robotic motion planning. Therefore, we formulate this problem as temporal interaction localization (TIL). Some recent works extract semantic masks as TIL references, but suffer from inaccurate object grounding and cluttered scenarios. Although current temporal action localization (TAL) methods perform well in detecting verb-noun action segments, they rely on category annotations during training and exhibit limited precision in localizing hand-object contact/separation moments. To address these issues, we propose a novel zero-shot approach dubbed EgoLoc to localize hand-object contact and separation timestamps in egocentric videos. EgoLoc introduces hand-dynamics-guided sampling to generate high-quality visual prompts. It exploits the vision-language model to identify contact/separation attributes, localize specific timestamps, and provide closed-loop feedback for further refinement. EgoLoc eliminates the need for object masks and verb-noun taxonomies, leading to generalizable zero-shot implementation. Comprehensive experiments on the public dataset and our novel benchmarks demonstrate that EgoLoc achieves plausible TIL for egocentric videos. It is also validated to effectively facilitate multiple downstream applications in egocentric vision and robotic manipulation tasks. Code and relevant data will be released at https://github.com/IRMVLab/EgoLoc.
Abstract:Human spoken communication involves not only lexical content but also non-verbal vocalizations (NVs) such as laughter, sighs, and coughs, which convey emotions, intentions, and social signals. However, most existing speech systems focus solely on verbal content and lack the ability to understand and generate such non-verbal cues, reducing the emotional intelligence and communicative richness of spoken interfaces. In this work, we introduce $\textbf{NonVerbalSpeech-38K}$, a large and diverse dataset for non-verbal speech generation and understanding, collected from real-world media and annotated using an automatic pipeline. The dataset contains 38,718 samples (about 131 hours) with 10 categories of non-verbal cues, such as laughter, sniff, and throat clearing. We further validate the dataset by fine-tuning state-of-the-art models, including F5-TTS and Qwen2-Audio, demonstrating its effectiveness in non-verbal speech generation and understanding tasks. Our contributions are threefold: (1) We propose a practical pipeline for building natural and diverse non-verbal speech datasets; (2) We release a large-scale dataset to advance research on non-verbal speech generation and understanding; (3) We validate the dataset's effectiveness by demonstrating improvements in both non-verbal speech synthesis and captioning, thereby facilitating richer human-computer interaction.




Abstract:We propose TES-VC (Text-driven Environment and Speaker controllable Voice Conversion), a text-driven voice conversion framework with independent control of speaker timbre and environmental acoustics. TES-VC processes simultaneous text inputs for target voice and environment, accurately generating speech matching described timbre/environment while preserving source content. Trained on synthetic data with decoupled vocal/environment features via latent diffusion modeling, our method eliminates interference between attributes. The Retrieval-Based Timbre Control (RBTC) module enables precise manipulation using abstract descriptions without paired data. Experiments confirm TES-VC effectively generates contextually appropriate speech in both timbre and environment with high content retention and superior controllability which demonstrates its potential for widespread applications.
Abstract:Concepts represent generalized abstractions that enable humans to categorize and reason efficiently, yet it is unclear to what extent Large Language Models (LLMs) comprehend these semantic relationships. Existing benchmarks typically focus on factual recall and isolated tasks, failing to evaluate the ability of LLMs to understand conceptual boundaries. To address this gap, we introduce CK-Arena, a multi-agent interaction game built upon the Undercover game, designed to evaluate the capacity of LLMs to reason with concepts in interactive settings. CK-Arena challenges models to describe, differentiate, and infer conceptual boundaries based on partial information, encouraging models to explore commonalities and distinctions between closely related concepts. By simulating real-world interaction, CK-Arena provides a scalable and realistic benchmark for assessing conceptual reasoning in dynamic environments. Experimental results show that LLMs' understanding of conceptual knowledge varies significantly across different categories and is not strictly aligned with parameter size or general model capabilities. The data and code are available at the project homepage: https://ck-arena.site.
Abstract:Teleoperation is crucial for hazardous environment operations and serves as a key tool for collecting expert demonstrations in robot learning. However, existing methods face robotic hardware dependency and control frequency mismatches between teleoperation devices and robotic platforms. Our approach automatically extracts kinematic parameters from unified robot description format (URDF) files, and enables pluggable deployment across diverse robots through uniform interfaces. The proposed interpolation algorithm bridges the frequency gap between low-rate human inputs and high-frequency robotic control commands through online continuous trajectory generation, \n{while requiring no access to the closed, bottom-level control loop}. To enhance trajectory smoothness, we introduce a minimum-stretch spline that optimizes the motion quality. The system further provides precision and rapid modes to accommodate different task requirements. Experiments across various robotic platforms including dual-arm ones demonstrate generality and smooth operation performance of our methods. The code is developed in C++ with python interface, and available at https://github.com/IRMV-Manipulation-Group/UTTG.




Abstract:Conversational speech synthesis (CSS) aims to synthesize both contextually appropriate and expressive speech, and considerable efforts have been made to enhance the understanding of conversational context. However, existing CSS systems are limited to deterministic prediction, overlooking the diversity of potential responses. Moreover, they rarely employ language model (LM)-based TTS backbones, limiting the naturalness and quality of synthesized speech. To address these issues, in this paper, we propose DiffCSS, an innovative CSS framework that leverages diffusion models and an LM-based TTS backbone to generate diverse, expressive, and contextually coherent speech. A diffusion-based context-aware prosody predictor is proposed to sample diverse prosody embeddings conditioned on multimodal conversational context. Then a prosody-controllable LM-based TTS backbone is developed to synthesize high-quality speech with sampled prosody embeddings. Experimental results demonstrate that the synthesized speech from DiffCSS is more diverse, contextually coherent, and expressive than existing CSS systems