Abstract:Current research in audio deepfake detection is gradually transitioning from binary classification to multi-class tasks, referred as audio deepfake source tracing task. However, existing studies on source tracing consider only closed-set scenarios and have not considered the challenges posed by open-set conditions. In this paper, we define the Neural Codec Source Tracing (NCST) task, which is capable of performing open-set neural codec classification and interpretable ALM detection. Specifically, we constructed the ST-Codecfake dataset for the NCST task, which includes bilingual audio samples generated by 11 state-of-the-art neural codec methods and ALM-based out-ofdistribution (OOD) test samples. Furthermore, we establish a comprehensive source tracing benchmark to assess NCST models in open-set conditions. The experimental results reveal that although the NCST models perform well in in-distribution (ID) classification and OOD detection, they lack robustness in classifying unseen real audio. The ST-codecfake dataset and code are available.
Abstract:Audio-LLM introduces audio modality into a large language model (LLM) to enable a powerful LLM to recognize, understand, and generate audio. However, during speech recognition in noisy environments, we observed the presence of illusions and repetition issues in audio-LLM, leading to substitution and insertion errors. This paper proposes a transcription prompt-based audio-LLM by introducing an ASR expert as a transcription tokenizer and a hybrid Autoregressive (AR) Non-autoregressive (NAR) decoding approach to solve the above problems. Experiments on 10k-hour WenetSpeech Mandarin corpus show that our approach decreases 12.2% and 9.6% CER relatively on Test_Net and Test_Meeting evaluation sets compared with baseline. Notably, we reduce the decoding repetition rate on the evaluation set to zero, showing that the decoding repetition problem has been solved fundamentally.
Abstract:Wav2vec 2.0 (W2V2) has shown impressive performance in automatic speech recognition (ASR). However, the large model size and the non-streaming architecture make it hard to be used under low-resource or streaming scenarios. In this work, we propose a two-stage knowledge distillation method to solve these two problems: the first step is to make the big and non-streaming teacher model smaller, and the second step is to make it streaming. Specially, we adopt the MSE loss for the distillation of hidden layers and the modified LF-MMI loss for the distillation of the prediction layer. Experiments are conducted on Gigaspeech, Librispeech, and an in-house dataset. The results show that the distilled student model (DistillW2V2) we finally get is 8x faster and 12x smaller than the original teacher model. For the 480ms latency setup, the DistillW2V2's relative word error rate (WER) degradation varies from 9% to 23.4% on test sets, which reveals a promising way to extend the W2V2's application scope.
Abstract:Recent studies have shown that the benefits provided by self-supervised pre-training and self-training (pseudo-labeling) are complementary. Semi-supervised fine-tuning strategies under the pre-training framework, however, remain insufficiently studied. Besides, modern semi-supervised speech recognition algorithms either treat unlabeled data indiscriminately or filter out noisy samples with a confidence threshold. The dissimilarities among different unlabeled data are often ignored. In this paper, we propose Censer, a semi-supervised speech recognition algorithm based on self-supervised pre-training to maximize the utilization of unlabeled data. The pre-training stage of Censer adopts wav2vec2.0 and the fine-tuning stage employs an improved semi-supervised learning algorithm from slimIPL, which leverages unlabeled data progressively according to their pseudo labels' qualities. We also incorporate a temporal pseudo label pool and an exponential moving average to control the pseudo labels' update frequency and to avoid model divergence. Experimental results on Libri-Light and LibriSpeech datasets manifest our proposed method achieves better performance compared to existing approaches while being more unified.
Abstract:Automatic speech recognition (ASR) systems used on smart phones or vehicles are usually required to process speech queries from very different domains. In such situations, a vanilla ASR system usually fails to perform well on every domain. This paper proposes a multi-domain ASR framework for Tencent Map, a navigation app used on smart phones and in-vehicle infotainment systems. The proposed framework consists of three core parts: a basic ASR module to generate n-best lists of a speech query, a text classification module to determine which domain the speech query belongs to, and a reranking module to rescore n-best lists using domain-specific language models. In addition, an instance sampling based method to training neural network language models (NNLMs) is proposed to address the data imbalance problem in multi-domain ASR. In experiments, the proposed framework was evaluated on navigation domain and music domain, since navigating and playing music are two main features of Tencent Map. Compared to a general ASR system, the proposed framework achieves a relative 13% $\sim$ 22% character error rate reduction on several test sets collected from Tencent Map and our in-car voice assistant.
Abstract:Recently, end-to-end automatic speech recognition models based on connectionist temporal classification (CTC) have achieved impressive results, especially when fine-tuned from wav2vec2.0 models. Due to the conditional independence assumption, CTC-based models are always weaker than attention-based encoder-decoder models and require the assistance of external language models (LMs). To solve this issue, we propose two knowledge transferring methods that leverage pre-trained LMs, such as BERT and GPT2, to improve CTC-based models. The first method is based on representation learning, in which the CTC-based models use the representation produced by BERT as an auxiliary learning target. The second method is based on joint classification learning, which combines GPT2 for text modeling with a hybrid CTC/attention architecture. Experiment on AISHELL-1 corpus yields a character error rate (CER) of 4.2% on the test set. When compared to the vanilla CTC-based models fine-tuned from the wav2vec2.0 models, our knowledge transferring method reduces CER by 16.1% relatively without external LMs.
Abstract:Recently, self-supervised pretraining has achieved impressive results in end-to-end (E2E) automatic speech recognition (ASR). However, the dominant sequence-to-sequence (S2S) E2E model is still hard to fully utilize the self-supervised pre-training methods because its decoder is conditioned on acoustic representation thus cannot be pretrained separately. In this paper, we propose a pretrained Transformer (Preformer) S2S ASR architecture based on hybrid CTC/attention E2E models to fully utilize the pretrained acoustic models (AMs) and language models (LMs). In our framework, the encoder is initialized with a pretrained AM (wav2vec2.0). The Preformer leverages CTC as an auxiliary task during training and inference. Furthermore, we design a one-cross decoder (OCD), which relaxes the dependence on acoustic representations so that it can be initialized with pretrained LM (DistilGPT2). Experiments are conducted on the AISHELL-1 corpus and achieve a $4.6\%$ character error rate (CER) on the test set. Compared with our vanilla hybrid CTC/attention Transformer baseline, our proposed CTC/attention-based Preformer yields $27\%$ relative CER reduction. To the best of our knowledge, this is the first work to utilize both pretrained AM and LM in a S2S ASR system.
Abstract:Recently, self-supervised pre-training has gained success in automatic speech recognition (ASR). However, considering the difference between speech accents in real scenarios, how to identify accents and use accent features to improve ASR is still challenging. In this paper, we employ the self-supervised pre-training method for both accent identification and accented speech recognition tasks. For the former task, a standard deviation constraint loss (SDC-loss) based end-to-end (E2E) architecture is proposed to identify accents under the same language. As for accented speech recognition task, we design an accent-dependent ASR system, which can utilize additional accent input features. Furthermore, we propose a frame-level accent feature, which is extracted based on the proposed accent identification model and can be dynamically adjusted. We pre-train our models using 960 hours unlabeled LibriSpeech dataset and fine-tune them on AESRC2020 speech dataset. The experimental results show that our proposed accent-dependent ASR system is significantly ahead of the AESRC2020 baseline and achieves $6.5\%$ relative word error rate (WER) reduction compared with our accent-independent ASR system.
Abstract:Recently self-supervised learning has emerged as an effective approach to improve the performance of automatic speech recognition (ASR). Under such a framework, the neural network is usually pre-trained with massive unlabeled data and then fine-tuned with limited labeled data. However, the non-streaming architecture like bidirectional transformer is usually adopted by the neural network to achieve competitive results, which can not be used in streaming scenarios. In this paper, we mainly focus on improving the performance of streaming transformer under the self-supervised learning framework. Specifically, we propose a novel two-stage training method during fine-tuning, which combines knowledge distilling and self-training. The proposed training method achieves 16.3% relative word error rate (WER) reduction on Librispeech noisy test set. Finally, by only using the 100h clean subset of Librispeech as the labeled data and the rest (860h) as the unlabeled data, our streaming transformer based model obtains competitive WERs 3.5/8.7 on Librispeech clean/noisy test sets.
Abstract:Nowadays voice search for points of interest (POI) is becoming increasingly popular. However, speech recognition for local POI has remained to be a challenge due to multi-dialect and massive POI. This paper improves speech recognition accuracy for local POI from two aspects. Firstly, a geographic acoustic model (Geo-AM) is proposed. The Geo-AM deals with multi-dialect problem using dialect-specific input feature and dialect-specific top layer. Secondly, a group of geo-specific language models (Geo-LMs) are integrated into our speech recognition system to improve recognition accuracy of long tail and homophone POI. During decoding, specific language models are selected on demand according to users' geographic location. Experiments show that the proposed Geo-AM achieves 6.5%$\sim$10.1% relative character error rate (CER) reduction on an accent testset and the proposed Geo-AM and Geo-LM totally achieve over 18.7% relative CER reduction on Tencent Map task.