Abstract:The rapid advancement of audio generation technologies has escalated the risks of malicious deepfake audio across speech, sound, singing voice, and music, threatening multimedia security and trust. While existing countermeasures (CMs) perform well in single-type audio deepfake detection (ADD), their performance declines in cross-type scenarios. This paper is dedicated to studying the alltype ADD task. We are the first to comprehensively establish an all-type ADD benchmark to evaluate current CMs, incorporating cross-type deepfake detection across speech, sound, singing voice, and music. Then, we introduce the prompt tuning self-supervised learning (PT-SSL) training paradigm, which optimizes SSL frontend by learning specialized prompt tokens for ADD, requiring 458x fewer trainable parameters than fine-tuning (FT). Considering the auditory perception of different audio types,we propose the wavelet prompt tuning (WPT)-SSL method to capture type-invariant auditory deepfake information from the frequency domain without requiring additional training parameters, thereby enhancing performance over FT in the all-type ADD task. To achieve an universally CM, we utilize all types of deepfake audio for co-training. Experimental results demonstrate that WPT-XLSR-AASIST achieved the best performance, with an average EER of 3.58% across all evaluation sets. The code is available online.
Abstract:Video diffusion models (VDMs) have advanced significantly in recent years, enabling the generation of highly realistic videos and drawing the attention of the community in their potential as world simulators. However, despite their capabilities, VDMs often fail to produce physically plausible videos due to an inherent lack of understanding of physics, resulting in incorrect dynamics and event sequences. To address this limitation, we propose a novel two-stage image-to-video generation framework that explicitly incorporates physics. In the first stage, we employ a Vision Language Model (VLM) as a coarse-grained motion planner, integrating chain-of-thought and physics-aware reasoning to predict a rough motion trajectories/changes that approximate real-world physical dynamics while ensuring the inter-frame consistency. In the second stage, we use the predicted motion trajectories/changes to guide the video generation of a VDM. As the predicted motion trajectories/changes are rough, noise is added during inference to provide freedom to the VDM in generating motion with more fine details. Extensive experimental results demonstrate that our framework can produce physically plausible motion, and comparative evaluations highlight the notable superiority of our approach over existing methods. More video results are available on our Project Page: https://madaoer.github.io/projects/physically_plausible_video_generation.
Abstract:Skeleton-based Temporal Action Segmentation (STAS) aims to segment and recognize various actions from long, untrimmed sequences of human skeletal movements. Current STAS methods typically employ spatio-temporal modeling to establish dependencies among joints as well as frames, and utilize one-hot encoding with cross-entropy loss for frame-wise classification supervision. However, these methods overlook the intrinsic correlations among joints and actions within skeletal features, leading to a limited understanding of human movements. To address this, we propose a Text-Derived Relational Graph-Enhanced Network (TRG-Net) that leverages prior graphs generated by Large Language Models (LLM) to enhance both modeling and supervision. For modeling, the Dynamic Spatio-Temporal Fusion Modeling (DSFM) method incorporates Text-Derived Joint Graphs (TJG) with channel- and frame-level dynamic adaptation to effectively model spatial relations, while integrating spatio-temporal core features during temporal modeling. For supervision, the Absolute-Relative Inter-Class Supervision (ARIS) method employs contrastive learning between action features and text embeddings to regularize the absolute class distributions, and utilizes Text-Derived Action Graphs (TAG) to capture the relative inter-class relationships among action features. Additionally, we propose a Spatial-Aware Enhancement Processing (SAEP) method, which incorporates random joint occlusion and axial rotation to enhance spatial generalization. Performance evaluations on four public datasets demonstrate that TRG-Net achieves state-of-the-art results.
Abstract:In this work, we study offline reinforcement learning (RL) with zero-shot generalization property (ZSG), where the agent has access to an offline dataset including experiences from different environments, and the goal of the agent is to train a policy over the training environments which performs well on test environments without further interaction. Existing work showed that classical offline RL fails to generalize to new, unseen environments. We propose pessimistic empirical risk minimization (PERM) and pessimistic proximal policy optimization (PPPO), which leverage pessimistic policy evaluation to guide policy learning and enhance generalization. We show that both PERM and PPPO are capable of finding a near-optimal policy with ZSG. Our result serves as a first step in understanding the foundation of the generalization phenomenon in offline reinforcement learning.
Abstract:Approximate Nearest Neighbor Search (ANNS) is essential for modern data-driven applications that require efficient retrieval of top-k results from massive vector databases. Although existing graph-based ANNS algorithms achieve a high recall rate on billion-scale datasets, their slow construction speed and limited scalability hinder their applicability to large-scale industrial scenarios. In this paper, we introduce SOGAIC, the first Scalable Overload-Aware Graph-Based ANNS Index Construction system tailored for ultra-large-scale vector databases: 1) We propose a dynamic data partitioning algorithm with overload constraints that adaptively introduces overlaps among subsets; 2) To enable efficient distributed subgraph construction, we employ a load-balancing task scheduling framework combined with an agglomerative merging strategy; 3) Extensive experiments on various datasets demonstrate a reduction of 47.3% in average construction time compared to existing methods. The proposed method has also been successfully deployed in a real-world industrial search engine, managing over 10 billion daily updated vectors and serving hundreds of millions of users.
Abstract:Online learning to rank sequentially recommends a small list of items to users from a large candidate set and receives the users' click feedback. In many real-world scenarios, users browse the recommended list in order and click the first attractive item without checking the rest. Such behaviors are usually formulated as the cascade model. Many recent works study algorithms for cascading bandits, an online learning to rank framework in the cascade model. However, the performance of existing methods may drop significantly if part of the user feedback is adversarially corrupted (e.g., click fraud). In this work, we study how to resist adversarial corruptions in cascading bandits. We first formulate the ``\textit{Cascading Bandits with Adversarial Corruptions}" (CBAC) problem, which assumes that there is an adaptive adversary that may manipulate the user feedback. Then we propose two robust algorithms for this problem, which assume the corruption level is known and agnostic, respectively. We show that both algorithms can achieve logarithmic regret when the algorithm is not under attack, and the regret increases linearly with the corruption level. The experimental results also verify the robustness of our methods.
Abstract:The contextual multi-armed bandit (MAB) is a widely used framework for problems requiring sequential decision-making under uncertainty, such as recommendation systems. In applications involving a large number of users, the performance of contextual MAB can be significantly improved by facilitating collaboration among multiple users. This has been achieved by the clustering of bandits (CB) methods, which adaptively group the users into different clusters and achieve collaboration by allowing the users in the same cluster to share data. However, classical CB algorithms typically rely on numerical reward feedback, which may not be practical in certain real-world applications. For instance, in recommendation systems, it is more realistic and reliable to solicit preference feedback between pairs of recommended items rather than absolute rewards. To address this limitation, we introduce the first "clustering of dueling bandit algorithms" to enable collaborative decision-making based on preference feedback. We propose two novel algorithms: (1) Clustering of Linear Dueling Bandits (COLDB) which models the user reward functions as linear functions of the context vectors, and (2) Clustering of Neural Dueling Bandits (CONDB) which uses a neural network to model complex, non-linear user reward functions. Both algorithms are supported by rigorous theoretical analyses, demonstrating that user collaboration leads to improved regret bounds. Extensive empirical evaluations on synthetic and real-world datasets further validate the effectiveness of our methods, establishing their potential in real-world applications involving multiple users with preference-based feedback.
Abstract:Contextual linear dueling bandits have recently garnered significant attention due to their widespread applications in important domains such as recommender systems and large language models. Classical dueling bandit algorithms are typically only applicable to a single agent. However, many applications of dueling bandits involve multiple agents who wish to collaborate for improved performance yet are unwilling to share their data. This motivates us to draw inspirations from federated learning, which involves multiple agents aiming to collaboratively train their neural networks via gradient descent (GD) without sharing their raw data. Previous works have developed federated linear bandit algorithms which rely on closed-form updates of the bandit parameters (e.g., the linear function parameter) to achieve collaboration. However, in linear dueling bandits, the linear function parameter lacks a closed-form expression and its estimation requires minimizing a loss function. This renders these previous methods inapplicable. In this work, we overcome this challenge through an innovative and principled combination of online gradient descent (for minimizing the loss function to estimate the linear function parameters) and federated learning, hence introducing the first federated linear dueling bandit algorithms. Through rigorous theoretical analysis, we prove that our algorithms enjoy a sub-linear upper bound on its cumulative regret. We also use empirical experiments to demonstrate the effectiveness of our algorithms and the practical benefit of collaboration.
Abstract:Large language models (LLMs) have been adopted to solve sequential decision-making tasks such as multi-armed bandits (MAB), in which an LLM is directly instructed to select the arms to pull in every iteration. However, this paradigm of direct arm selection using LLMs has been shown to be suboptimal in many MAB tasks. Therefore, we propose an alternative approach which combines the strengths of classical MAB and LLMs. Specifically, we adopt a classical MAB algorithm as the high-level framework and leverage the strong in-context learning capability of LLMs to perform the sub-task of reward prediction. Firstly, we incorporate the LLM-based reward predictor into the classical Thompson sampling (TS) algorithm and adopt a decaying schedule for the LLM temperature to ensure a transition from exploration to exploitation. Next, we incorporate the LLM-based reward predictor (with a temperature of 0) into a regression oracle-based MAB algorithm equipped with an explicit exploration mechanism. We also extend our TS-based algorithm to dueling bandits where only the preference feedback between pairs of arms is available, which requires non-trivial algorithmic modifications. We conduct empirical evaluations using both synthetic MAB tasks and experiments designed using real-world text datasets, in which the results show that our algorithms consistently outperform previous baseline methods based on direct arm selection. Interestingly, we also demonstrate that in challenging tasks where the arms lack semantic meanings that can be exploited by the LLM, our approach achieves considerably better performance than LLM-based direct arm selection.
Abstract:Large language models (LLMs) have recently been employed as agents to solve sequential decision-making tasks such as Bayesian optimization and multi-armed bandits (MAB). These works usually adopt an LLM for sequential action selection by providing it with a fixed, manually designed meta-prompt. However, numerous previous works have found that the prompt has a significant impact on the performance of the LLM, which calls for a method to automatically optimize the meta-prompt for LLM-based agents. Unfortunately, the non-stationarity in the reward observations during LLM-based sequential decision-making makes meta-prompt optimization highly challenging. To address this challenge, we draw inspirations from adversarial bandit algorithms, which are inherently capable of handling non-stationary reward observations. Building on this foundation, we propose our EXPonential-weight algorithm for prompt Optimization} (EXPO) to automatically optimize the task description and meta-instruction in the meta-prompt for LLM-based agents. We also extend EXPO to additionally optimize the exemplars (i.e., history of interactions) in the meta-prompt to further enhance the performance, hence introducing our EXPO-ES algorithm. We use extensive experiments to show that our algorithms significantly improve the performance of LLM-based sequential decision-making.