Abstract:Approximate Nearest Neighbor Search (ANNS) is essential for modern data-driven applications that require efficient retrieval of top-k results from massive vector databases. Although existing graph-based ANNS algorithms achieve a high recall rate on billion-scale datasets, their slow construction speed and limited scalability hinder their applicability to large-scale industrial scenarios. In this paper, we introduce SOGAIC, the first Scalable Overload-Aware Graph-Based ANNS Index Construction system tailored for ultra-large-scale vector databases: 1) We propose a dynamic data partitioning algorithm with overload constraints that adaptively introduces overlaps among subsets; 2) To enable efficient distributed subgraph construction, we employ a load-balancing task scheduling framework combined with an agglomerative merging strategy; 3) Extensive experiments on various datasets demonstrate a reduction of 47.3% in average construction time compared to existing methods. The proposed method has also been successfully deployed in a real-world industrial search engine, managing over 10 billion daily updated vectors and serving hundreds of millions of users.
Abstract:Online learning to rank sequentially recommends a small list of items to users from a large candidate set and receives the users' click feedback. In many real-world scenarios, users browse the recommended list in order and click the first attractive item without checking the rest. Such behaviors are usually formulated as the cascade model. Many recent works study algorithms for cascading bandits, an online learning to rank framework in the cascade model. However, the performance of existing methods may drop significantly if part of the user feedback is adversarially corrupted (e.g., click fraud). In this work, we study how to resist adversarial corruptions in cascading bandits. We first formulate the ``\textit{Cascading Bandits with Adversarial Corruptions}" (CBAC) problem, which assumes that there is an adaptive adversary that may manipulate the user feedback. Then we propose two robust algorithms for this problem, which assume the corruption level is known and agnostic, respectively. We show that both algorithms can achieve logarithmic regret when the algorithm is not under attack, and the regret increases linearly with the corruption level. The experimental results also verify the robustness of our methods.
Abstract:The contextual multi-armed bandit (MAB) is a widely used framework for problems requiring sequential decision-making under uncertainty, such as recommendation systems. In applications involving a large number of users, the performance of contextual MAB can be significantly improved by facilitating collaboration among multiple users. This has been achieved by the clustering of bandits (CB) methods, which adaptively group the users into different clusters and achieve collaboration by allowing the users in the same cluster to share data. However, classical CB algorithms typically rely on numerical reward feedback, which may not be practical in certain real-world applications. For instance, in recommendation systems, it is more realistic and reliable to solicit preference feedback between pairs of recommended items rather than absolute rewards. To address this limitation, we introduce the first "clustering of dueling bandit algorithms" to enable collaborative decision-making based on preference feedback. We propose two novel algorithms: (1) Clustering of Linear Dueling Bandits (COLDB) which models the user reward functions as linear functions of the context vectors, and (2) Clustering of Neural Dueling Bandits (CONDB) which uses a neural network to model complex, non-linear user reward functions. Both algorithms are supported by rigorous theoretical analyses, demonstrating that user collaboration leads to improved regret bounds. Extensive empirical evaluations on synthetic and real-world datasets further validate the effectiveness of our methods, establishing their potential in real-world applications involving multiple users with preference-based feedback.
Abstract:Contextual linear dueling bandits have recently garnered significant attention due to their widespread applications in important domains such as recommender systems and large language models. Classical dueling bandit algorithms are typically only applicable to a single agent. However, many applications of dueling bandits involve multiple agents who wish to collaborate for improved performance yet are unwilling to share their data. This motivates us to draw inspirations from federated learning, which involves multiple agents aiming to collaboratively train their neural networks via gradient descent (GD) without sharing their raw data. Previous works have developed federated linear bandit algorithms which rely on closed-form updates of the bandit parameters (e.g., the linear function parameter) to achieve collaboration. However, in linear dueling bandits, the linear function parameter lacks a closed-form expression and its estimation requires minimizing a loss function. This renders these previous methods inapplicable. In this work, we overcome this challenge through an innovative and principled combination of online gradient descent (for minimizing the loss function to estimate the linear function parameters) and federated learning, hence introducing the first federated linear dueling bandit algorithms. Through rigorous theoretical analysis, we prove that our algorithms enjoy a sub-linear upper bound on its cumulative regret. We also use empirical experiments to demonstrate the effectiveness of our algorithms and the practical benefit of collaboration.
Abstract:Large language models (LLMs) have been adopted to solve sequential decision-making tasks such as multi-armed bandits (MAB), in which an LLM is directly instructed to select the arms to pull in every iteration. However, this paradigm of direct arm selection using LLMs has been shown to be suboptimal in many MAB tasks. Therefore, we propose an alternative approach which combines the strengths of classical MAB and LLMs. Specifically, we adopt a classical MAB algorithm as the high-level framework and leverage the strong in-context learning capability of LLMs to perform the sub-task of reward prediction. Firstly, we incorporate the LLM-based reward predictor into the classical Thompson sampling (TS) algorithm and adopt a decaying schedule for the LLM temperature to ensure a transition from exploration to exploitation. Next, we incorporate the LLM-based reward predictor (with a temperature of 0) into a regression oracle-based MAB algorithm equipped with an explicit exploration mechanism. We also extend our TS-based algorithm to dueling bandits where only the preference feedback between pairs of arms is available, which requires non-trivial algorithmic modifications. We conduct empirical evaluations using both synthetic MAB tasks and experiments designed using real-world text datasets, in which the results show that our algorithms consistently outperform previous baseline methods based on direct arm selection. Interestingly, we also demonstrate that in challenging tasks where the arms lack semantic meanings that can be exploited by the LLM, our approach achieves considerably better performance than LLM-based direct arm selection.
Abstract:Large language models (LLMs) have recently been employed as agents to solve sequential decision-making tasks such as Bayesian optimization and multi-armed bandits (MAB). These works usually adopt an LLM for sequential action selection by providing it with a fixed, manually designed meta-prompt. However, numerous previous works have found that the prompt has a significant impact on the performance of the LLM, which calls for a method to automatically optimize the meta-prompt for LLM-based agents. Unfortunately, the non-stationarity in the reward observations during LLM-based sequential decision-making makes meta-prompt optimization highly challenging. To address this challenge, we draw inspirations from adversarial bandit algorithms, which are inherently capable of handling non-stationary reward observations. Building on this foundation, we propose our EXPonential-weight algorithm for prompt Optimization} (EXPO) to automatically optimize the task description and meta-instruction in the meta-prompt for LLM-based agents. We also extend EXPO to additionally optimize the exemplars (i.e., history of interactions) in the meta-prompt to further enhance the performance, hence introducing our EXPO-ES algorithm. We use extensive experiments to show that our algorithms significantly improve the performance of LLM-based sequential decision-making.
Abstract:Point cloud completion aims to reconstruct complete 3D shapes from partial 3D point clouds. With advancements in deep learning techniques, various methods for point cloud completion have been developed. Despite achieving encouraging results, a significant issue remains: these methods often overlook the variability in point clouds sampled from a single 3D object surface. This variability can lead to ambiguity and hinder the achievement of more precise completion results. Therefore, in this study, we introduce a novel point cloud completion network, namely Dual-Codebook Point Completion Network (DC-PCN), following an encder-decoder pipeline. The primary objective of DC-PCN is to formulate a singular representation of sampled point clouds originating from the same 3D surface. DC-PCN introduces a dual-codebook design to quantize point-cloud representations from a multilevel perspective. It consists of an encoder-codebook and a decoder-codebook, designed to capture distinct point cloud patterns at shallow and deep levels. Additionally, to enhance the information flow between these two codebooks, we devise an information exchange mechanism. This approach ensures that crucial features and patterns from both shallow and deep levels are effectively utilized for completion. Extensive experiments on the PCN, ShapeNet\_Part, and ShapeNet34 datasets demonstrate the state-of-the-art performance of our method.
Abstract:Current research in audio deepfake detection is gradually transitioning from binary classification to multi-class tasks, referred as audio deepfake source tracing task. However, existing studies on source tracing consider only closed-set scenarios and have not considered the challenges posed by open-set conditions. In this paper, we define the Neural Codec Source Tracing (NCST) task, which is capable of performing open-set neural codec classification and interpretable ALM detection. Specifically, we constructed the ST-Codecfake dataset for the NCST task, which includes bilingual audio samples generated by 11 state-of-the-art neural codec methods and ALM-based out-ofdistribution (OOD) test samples. Furthermore, we establish a comprehensive source tracing benchmark to assess NCST models in open-set conditions. The experimental results reveal that although the NCST models perform well in in-distribution (ID) classification and OOD detection, they lack robustness in classifying unseen real audio. The ST-codecfake dataset and code are available.
Abstract:Recently, Vision Large Language Models (VLLMs) integrated with vision encoders have shown promising performance in vision understanding. The key of VLLMs is to encode visual content into sequences of visual tokens, enabling VLLMs to simultaneously process both visual and textual content. However, understanding videos, especially long videos, remain a challenge to VLLMs as the number of visual tokens grows rapidly when encoding videos, resulting in the risk of exceeding the context window of VLLMs and introducing heavy computation burden. To restrict the number of visual tokens, existing VLLMs either: (1) uniformly downsample videos into a fixed number of frames or (2) reducing the number of visual tokens encoded from each frame. We argue the former solution neglects the rich temporal cue in videos and the later overlooks the spatial details in each frame. In this work, we present Balanced-VLLM (B-VLLM): a novel VLLM framework that aims to effectively leverage task relevant spatio-temporal cues while restricting the number of visual tokens under the VLLM context window length. At the core of our method, we devise a text-conditioned adaptive frame selection module to identify frames relevant to the visual understanding task. The selected frames are then de-duplicated using a temporal frame token merging technique. The visual tokens of the selected frames are processed through a spatial token sampling module and an optional spatial token merging strategy to achieve precise control over the token count. Experimental results show that B-VLLM is effective in balancing the number of frames and visual tokens in video understanding, yielding superior performance on various video understanding benchmarks. Our code is available at https://github.com/zhuqiangLu/B-VLLM.
Abstract:Recently, extended short-term precipitation nowcasting struggles with decreasing precision because of insufficient consideration of meteorological knowledge, such as weather fronts which significantly influence precipitation intensity, duration, and spatial distribution. Therefore, in this paper, we present DuoCast, a novel dual-probabilistic meteorology-aware model designed to address both broad weather evolution and micro-scale fluctuations using two diffusion models, PrecipFlow and MicroDynamic, respectively. Our PrecipFlow model captures evolution trends through an Extreme Precipitation-Aware Encoder (EPA-Encoder), which includes AirConvolution and FrontAttention blocks to process two levels of precipitation data: general and extreme. The output conditions a UNet-based diffusion to produce prediction maps enriched with weather front information. The MicroDynamic model further refines the results to capture micro-scale variability. Extensive experiments on four public benchmarks demonstrate the effectiveness of our DuoCast, achieving superior performance over state-of-the-art methods. Our code is available at https://github.com/ph-w2000/DuoCast.