Abstract:Offline evaluation of LLMs is crucial in understanding their capacities, though current methods remain underexplored in existing research. In this work, we focus on the offline evaluation of the chain-of-thought capabilities and show how to optimize LLMs based on the proposed evaluation method. To enable offline feedback with rich knowledge and reasoning paths, we use knowledge graphs (e.g., Wikidata5m) to provide feedback on the generated chain of thoughts. Due to the heterogeneity between LLM reasoning and KG structures, direct interaction and feedback from KGs on LLM behavior are challenging, as they require accurate entity linking and grounding of LLM-generated chains of thought in the KG. To address the above challenge, we propose an offline chain-of-thought evaluation framework, OCEAN, which models chain-of-thought reasoning in LLMs as an MDP and evaluate the policy's alignment with KG preference modeling. To overcome the reasoning heterogeneity and grounding problems, we leverage on-policy KG exploration and RL to model a KG policy that generates token-level likelihood distributions for LLM-generated chain-of-thought reasoning paths, simulating KG reasoning preference. Then we incorporate the knowledge-graph feedback on the validity and alignment of the generated reasoning paths into inverse propensity scores and propose KG-IPS estimator. Theoretically, we prove the unbiasedness of the proposed KG-IPS estimator and provide a lower bound on its variance. With the off-policy evaluated value function, we can directly enable off-policy optimization to further enhance chain-of-thought alignment. Our empirical study shows that OCEAN can be efficiently optimized for generating chain-of-thought reasoning paths with higher estimated values without affecting LLMs' general abilities in downstream tasks or their internal knowledge.
Abstract:Sequential recommender systems (SRSs) aim to predict the subsequent items which may interest users via comprehensively modeling users' complex preference embedded in the sequence of user-item interactions. However, most of existing SRSs often model users' single low-level preference based on item ID information while ignoring the high-level preference revealed by item attribute information, such as item category. Furthermore, they often utilize limited sequence context information to predict the next item while overlooking richer inter-item semantic relations. To this end, in this paper, we proposed a novel hierarchical preference modeling framework to substantially model the complex low- and high-level preference dynamics for accurate sequential recommendation. Specifically, in the framework, a novel dual-transformer module and a novel dual contrastive learning scheme have been designed to discriminatively learn users' low- and high-level preference and to effectively enhance both low- and high-level preference learning respectively. In addition, a novel semantics-enhanced context embedding module has been devised to generate more informative context embedding for further improving the recommendation performance. Extensive experiments on six real-world datasets have demonstrated both the superiority of our proposed method over the state-of-the-art ones and the rationality of our design.
Abstract:Recent advancements in diffusion models have shown promising results in sequential recommendation (SR). However, current diffusion-based methods still exhibit two key limitations. First, they implicitly model the diffusion process for target item embeddings rather than the discrete target item itself, leading to inconsistency in the recommendation process. Second, existing methods rely on either implicit or explicit conditional diffusion models, limiting their ability to fully capture the context of user behavior and leading to less robust target item embeddings. In this paper, we propose the Dual Conditional Diffusion Models for Sequential Recommendation (DCRec), introducing a discrete-to-continuous sequential recommendation diffusion framework. Our framework introduces a complete Markov chain to model the transition from the reversed target item representation to the discrete item index, bridging the discrete and continuous item spaces for diffusion models and ensuring consistency with the diffusion framework. Building on this framework, we present the Dual Conditional Diffusion Transformer (DCDT) that incorporates the implicit conditional and the explicit conditional for diffusion-based SR. Extensive experiments on public benchmark datasets demonstrate that DCRec outperforms state-of-the-art methods.
Abstract:Sequential recommendation aims to predict the next item which interests users via modeling their interest in items over time. Most of the existing works on sequential recommendation model users' dynamic interest in specific items while overlooking users' static interest revealed by some static attribute information of items, e.g., category, or brand. Moreover, existing works often only consider the positive excitation of a user's historical interactions on his/her next choice on candidate items while ignoring the commonly existing negative excitation, resulting in insufficient modeling dynamic interest. The overlook of static interest and negative excitation will lead to incomplete interest modeling and thus impede the recommendation performance. To this end, in this paper, we propose modeling both static interest and negative excitation for dynamic interest to further improve the recommendation performance. Accordingly, we design a novel Static-Dynamic Interest Learning (SDIL) framework featured with a novel Temporal Positive and Negative Excitation Modeling (TPNE) module for accurate sequential recommendation. TPNE is specially designed for comprehensively modeling dynamic interest based on temporal positive and negative excitation learning. Extensive experiments on three real-world datasets show that SDIL can effectively capture both static and dynamic interest and outperforms state-of-the-art baselines.
Abstract:Personalized text-to-image diffusion models have grown popular for their ability to efficiently acquire a new concept from user-defined text descriptions and a few images. However, in the real world, a user may wish to personalize a model on multiple concepts but one at a time, with no access to the data from previous concepts due to storage/privacy concerns. When faced with this continual learning (CL) setup, most personalization methods fail to find a balance between acquiring new concepts and retaining previous ones -- a challenge that continual personalization (CP) aims to solve. Inspired by the successful CL methods that rely on class-specific information for regularization, we resort to the inherent class-conditioned density estimates, also known as diffusion classifier (DC) scores, for continual personalization of text-to-image diffusion models. Namely, we propose using DC scores for regularizing the parameter-space and function-space of text-to-image diffusion models, to achieve continual personalization. Using several diverse evaluation setups, datasets, and metrics, we show that our proposed regularization-based CP methods outperform the state-of-the-art C-LoRA, and other baselines. Finally, by operating in the replay-free CL setup and on low-rank adapters, our method incurs zero storage and parameter overhead, respectively, over the state-of-the-art.
Abstract:Diffusion models are cutting-edge generative models adept at producing diverse, high-quality images. Despite their effectiveness, these models often require significant computational resources owing to their numerous sequential denoising steps and the significant inference cost of each step. Recently, Neural Architecture Search (NAS) techniques have been employed to automatically search for faster generation processes. However, NAS for diffusion is inherently time-consuming as it requires estimating thousands of diffusion models to search for the optimal one. In this paper, we introduce Flexiffusion, a novel training-free NAS paradigm designed to accelerate diffusion models by concurrently optimizing generation steps and network structures. Specifically, we partition the generation process into isometric step segments, each sequentially composed of a full step, multiple partial steps, and several null steps. The full step computes all network blocks, while the partial step involves part of the blocks, and the null step entails no computation. Flexiffusion autonomously explores flexible step combinations for each segment, substantially reducing search costs and enabling greater acceleration compared to the state-of-the-art (SOTA) method for diffusion models. Our searched models reported speedup factors of $2.6\times$ and $1.5\times$ for the original LDM-4-G and the SOTA, respectively. The factors for Stable Diffusion V1.5 and the SOTA are $5.1\times$ and $2.0\times$. We also verified the performance of Flexiffusion on multiple datasets, and positive experiment results indicate that Flexiffusion can effectively reduce redundancy in diffusion models.
Abstract:Disentangled Representation Learning aims to improve the explainability of deep learning methods by training a data encoder that identifies semantically meaningful latent variables in the data generation process. Nevertheless, there is no consensus regarding a universally accepted definition for the objective of disentangled representation learning. In particular, there is a considerable amount of discourse regarding whether should the latent variables be mutually independent or not. In this paper, we first investigate these arguments on the interrelationships between latent variables by establishing a conceptual bridge between Epistemology and Disentangled Representation Learning. Then, inspired by these interdisciplinary concepts, we introduce a two-level latent space framework to provide a general solution to the prior arguments on this issue. Finally, we propose a novel method for disentangled representation learning by employing an integration of mutual information constraint and independence constraint within the Generative Adversarial Network (GAN) framework. Experimental results demonstrate that our proposed method consistently outperforms baseline approaches in both quantitative and qualitative evaluations. The method exhibits strong performance across multiple commonly used metrics and demonstrates a great capability in disentangling various semantic factors, leading to an improved quality of controllable generation, which consequently benefits the explainability of the algorithm.
Abstract:Recent advances in machine learning algorithms have garnered growing interest in developing versatile Embodied AI systems. However, current research in this domain reveals opportunities for improvement. First, the direct adoption of RNNs and Transformers often overlooks the specific differences between Embodied AI and traditional sequential data modelling, potentially limiting its performance in Embodied AI tasks. Second, the reliance on task-specific configurations, such as pre-trained modules and dataset-specific logic, compromises the generalizability of these methods. We address these constraints by initially exploring the unique differences between Embodied AI tasks and other sequential data tasks through the lens of Causality, presenting a causal framework to elucidate the inadequacies of conventional sequential methods for Embodied AI. By leveraging this causal perspective, we propose Causality-Aware Transformer (CAT) Networks for Navigation, featuring a Causal Understanding Module to enhance the models's Environmental Understanding capability. Meanwhile, our method is devoid of task-specific inductive biases and can be trained in an End-to-End manner, which enhances the method's generalizability across various contexts. Empirical evaluations demonstrate that our methodology consistently surpasses benchmark performances across a spectrum of settings, tasks and simulation environments. Extensive ablation studies reveal that the performance gains can be attributed to the Causal Understanding Module, which demonstrates effectiveness and efficiency in both Reinforcement Learning and Supervised Learning settings.
Abstract:Large Language Models (LLMs) have demonstrated remarkable efficiency in tackling various tasks based on human instructions, but recent studies reveal that these models often fail to achieve satisfactory results on questions involving reasoning, such as mathematics or physics questions. This phenomenon is usually attributed to the uncertainty regarding whether these models could genuinely comprehend the knowledge embedded in the text or merely learn to replicate the token distribution without a true understanding of the content. In this paper, we delve into this problem and aim to enhance the reasoning capabilities of LLMs. First, we investigate if the model has genuine reasoning capabilities by visualizing the text generation process at the attention and representation level. Then, we formulate the reasoning process of LLMs into a causal framework, which provides a formal explanation of the problems we observe in the visualization. Finally, building upon this causal framework, we propose Deconfounded Causal Adaptation (DCA), a novel parameter-efficient fine-tuning (PEFT) method to enhance the model's reasoning capabilities by encouraging the model to extract the general problem-solving skills and apply these skills to different questions. Experiments show that our method outperforms the baseline consistently across multiple benchmarks, and with only 1.2M tunable parameters, we achieve better or comparable results to other fine-tuning methods. This demonstrates the effectiveness and efficiency of our method in improving the overall accuracy and reliability of LLMs.
Abstract:Recent years have witnessed the remarkable success of recommendation systems (RSs) in alleviating the information overload problem. As a new paradigm of RSs, session-based recommendation (SR) specializes in users' short-term preference capture and aims to provide a more dynamic and timely recommendation based on the ongoing interacted actions. In this survey, we will give a comprehensive overview of the recent works on SR. First, we clarify the definitions of various SR tasks and introduce the characteristics of session-based recommendation against other recommendation tasks. Then, we summarize the existing methods in two categories: sequential neural network based methods and graph neural network (GNN) based methods. The standard frameworks and technical are also introduced. Finally, we discuss the challenges of SR and new research directions in this area.