Abstract:Non-transferable learning (NTL) has been proposed to protect model intellectual property (IP) by creating a "non-transferable barrier" to restrict generalization from authorized to unauthorized domains. Recently, well-designed attack, which restores the unauthorized-domain performance by fine-tuning NTL models on few authorized samples, highlights the security risks of NTL-based applications. However, such attack requires modifying model weights, thus being invalid in the black-box scenario. This raises a critical question: can we trust the security of NTL models deployed as black-box systems? In this work, we reveal the first loophole of black-box NTL models by proposing a novel attack method (dubbed as JailNTL) to jailbreak the non-transferable barrier through test-time data disguising. The main idea of JailNTL is to disguise unauthorized data so it can be identified as authorized by the NTL model, thereby bypassing the non-transferable barrier without modifying the NTL model weights. Specifically, JailNTL encourages unauthorized-domain disguising in two levels, including: (i) data-intrinsic disguising (DID) for eliminating domain discrepancy and preserving class-related content at the input-level, and (ii) model-guided disguising (MGD) for mitigating output-level statistics difference of the NTL model. Empirically, when attacking state-of-the-art (SOTA) NTL models in the black-box scenario, JailNTL achieves an accuracy increase of up to 55.7% in the unauthorized domain by using only 1% authorized samples, largely exceeding existing SOTA white-box attacks.
Abstract:Over the past decades, researchers have primarily focused on improving the generalization abilities of models, with limited attention given to regulating such generalization. However, the ability of models to generalize to unintended data (e.g., harmful or unauthorized data) can be exploited by malicious adversaries in unforeseen ways, potentially resulting in violations of model ethics. Non-transferable learning (NTL), a task aimed at reshaping the generalization abilities of deep learning models, was proposed to address these challenges. While numerous methods have been proposed in this field, a comprehensive review of existing progress and a thorough analysis of current limitations remain lacking. In this paper, we bridge this gap by presenting the first comprehensive survey on NTL and introducing NTLBench, the first benchmark to evaluate NTL performance and robustness within a unified framework. Specifically, we first introduce the task settings, general framework, and criteria of NTL, followed by a summary of NTL approaches. Furthermore, we emphasize the often-overlooked issue of robustness against various attacks that can destroy the non-transferable mechanism established by NTL. Experiments conducted via NTLBench verify the limitations of existing NTL methods in robustness. Finally, we discuss the practical applications of NTL, along with its future directions and associated challenges.