Abstract:In Fine-Grained Visual Classification (FGVC), distinguishing highly similar subcategories remains a formidable challenge, often necessitating datasets with extensive variability. The acquisition and annotation of such FGVC datasets are notably difficult and costly, demanding specialized knowledge to identify subtle distinctions among closely related categories. Our study introduces a novel approach employing the Sequence Latent Diffusion Model (SLDM) for augmenting FGVC datasets, called Sequence Generative Image Augmentation (SGIA). Our method features a unique Bridging Transfer Learning (BTL) process, designed to minimize the domain gap between real and synthetically augmented data. This approach notably surpasses existing methods in generating more realistic image samples, providing a diverse range of pose transformations that extend beyond the traditional rigid transformations and style changes in generative augmentation. We demonstrate the effectiveness of our augmented dataset with substantial improvements in FGVC tasks on various datasets, models, and training strategies, especially in few-shot learning scenarios. Our method outperforms conventional image augmentation techniques in benchmark tests on three FGVC datasets, showcasing superior realism, variability, and representational quality. Our work sets a new benchmark and outperforms the previous state-of-the-art models in classification accuracy by 0.5% for the CUB-200-2011 dataset and advances the application of generative models in FGVC data augmentation.
Abstract:Facial expression recognition (FER) systems raise significant privacy concerns due to the potential exposure of sensitive identity information. This paper presents a study on removing identity information while preserving FER capabilities. Drawing on the observation that low-frequency components predominantly contain identity information and high-frequency components capture expression, we propose a novel two-stream framework that applies privacy enhancement to each component separately. We introduce a controlled privacy enhancement mechanism to optimize performance and a feature compensator to enhance task-relevant features without compromising privacy. Furthermore, we propose a novel privacy-utility trade-off, providing a quantifiable measure of privacy preservation efficacy in closed-set FER tasks. Extensive experiments on the benchmark CREMA-D dataset demonstrate that our framework achieves 78.84% recognition accuracy with a privacy (facial identity) leakage ratio of only 2.01%, highlighting its potential for secure and reliable video-based FER applications.
Abstract:In the realm of multimedia data analysis, the extensive use of image datasets has escalated concerns over privacy protection within such data. Current research predominantly focuses on privacy protection either in data sharing or upon the release of trained machine learning models. Our study pioneers a comprehensive privacy protection framework that safeguards image data privacy concurrently during data sharing and model publication. We propose an interactive image privacy protection framework that utilizes generative machine learning models to modify image information at the attribute level and employs machine unlearning algorithms for the privacy preservation of model parameters. This user-interactive framework allows for adjustments in privacy protection intensity based on user feedback on generated images, striking a balance between maximal privacy safeguarding and maintaining model performance. Within this framework, we instantiate two modules: a differential privacy diffusion model for protecting attribute information in images and a feature unlearning algorithm for efficient updates of the trained model on the revised image dataset. Our approach demonstrated superiority over existing methods on facial datasets across various attribute classifications.
Abstract:Given an audio-visual pair, audio-visual segmentation (AVS) aims to locate sounding sources by predicting pixel-wise maps. Previous methods assume that each sound component in an audio signal always has a visual counterpart in the image. However, this assumption overlooks that off-screen sounds and background noise often contaminate the audio recordings in real-world scenarios. They impose significant challenges on building a consistent semantic mapping between audio and visual signals for AVS models and thus impede precise sound localization. In this work, we propose a two-stage bootstrapping audio-visual segmentation framework by incorporating multi-modal foundation knowledge. In a nutshell, our BAVS is designed to eliminate the interference of background noise or off-screen sounds in segmentation by establishing the audio-visual correspondences in an explicit manner. In the first stage, we employ a segmentation model to localize potential sounding objects from visual data without being affected by contaminated audio signals. Meanwhile, we also utilize a foundation audio classification model to discern audio semantics. Considering the audio tags provided by the audio foundation model are noisy, associating object masks with audio tags is not trivial. Thus, in the second stage, we develop an audio-visual semantic integration strategy (AVIS) to localize the authentic-sounding objects. Here, we construct an audio-visual tree based on the hierarchical correspondence between sounds and object categories. We then examine the label concurrency between the localized objects and classified audio tags by tracing the audio-visual tree. With AVIS, we can effectively segment real-sounding objects. Extensive experiments demonstrate the superiority of our method on AVS datasets, particularly in scenarios involving background noise. Our project website is https://yenanliu.github.io/AVSS.github.io/.
Abstract:The audio-visual segmentation (AVS) task aims to segment sounding objects from a given video. Existing works mainly focus on fusing audio and visual features of a given video to achieve sounding object masks. However, we observed that prior arts are prone to segment a certain salient object in a video regardless of the audio information. This is because sounding objects are often the most salient ones in the AVS dataset. Thus, current AVS methods might fail to localize genuine sounding objects due to the dataset bias. In this work, we present an audio-visual instance-aware segmentation approach to overcome the dataset bias. In a nutshell, our method first localizes potential sounding objects in a video by an object segmentation network, and then associates the sounding object candidates with the given audio. We notice that an object could be a sounding object in one video but a silent one in another video. This would bring ambiguity in training our object segmentation network as only sounding objects have corresponding segmentation masks. We thus propose a silent object-aware segmentation objective to alleviate the ambiguity. Moreover, since the category information of audio is unknown, especially for multiple sounding sources, we propose to explore the audio-visual semantic correlation and then associate audio with potential objects. Specifically, we attend predicted audio category scores to potential instance masks and these scores will highlight corresponding sounding instances while suppressing inaudible ones. When we enforce the attended instance masks to resemble the ground-truth mask, we are able to establish audio-visual semantics correlation. Experimental results on the AVS benchmarks demonstrate that our method can effectively segment sounding objects without being biased to salient objects.
Abstract:In recent years, research on learning with noisy labels has focused on devising novel algorithms that can achieve robustness to noisy training labels while generalizing to clean data. These algorithms often incorporate sophisticated techniques, such as noise modeling, label correction, and co-training. In this study, we demonstrate that a simple baseline using cross-entropy loss, combined with widely used regularization strategies like learning rate decay, model weights average, and data augmentations, can outperform state-of-the-art methods. Our findings suggest that employing a combination of regularization strategies can be more effective than intricate algorithms in tackling the challenges of learning with noisy labels. While some of these regularization strategies have been utilized in previous noisy label learning research, their full potential has not been thoroughly explored. Our results encourage a reevaluation of benchmarks for learning with noisy labels and prompt reconsideration of the role of specialized learning algorithms designed for training with noisy labels.
Abstract:Vision-and-language navigation (VLN) simulates a visual agent that follows natural-language navigation instructions in real-world scenes. Existing approaches have made enormous progress in navigation in new environments, such as beam search, pre-exploration, and dynamic or hierarchical history encoding. To balance generalization and efficiency, we resort to memorizing visited scenarios apart from the ongoing route while navigating. In this work, we introduce a mechanism of Episodic Scene memory (ESceme) for VLN that wakes an agent's memories of past visits when it enters the current scene. The episodic scene memory allows the agent to envision a bigger picture of the next prediction. This way, the agent learns to utilize dynamically updated information instead of merely adapting to static observations. We provide a simple yet effective implementation of ESceme by enhancing the accessible views at each location and progressively completing the memory while navigating. We verify the superiority of ESceme on short-horizon (R2R), long-horizon (R4R), and vision-and-dialog (CVDN) VLN tasks. Our ESceme also wins first place on the CVDN leaderboard. Code is available: \url{https://github.com/qizhust/esceme}.}
Abstract:Convolutional Neural Networks (CNNs) have demonstrated superiority in learning patterns, but are sensitive to label noises and may overfit noisy labels during training. The early stopping strategy averts updating CNNs during the early training phase and is widely employed in the presence of noisy labels. Motivated by biological findings that the amplitude spectrum (AS) and phase spectrum (PS) in the frequency domain play different roles in the animal's vision system, we observe that PS, which captures more semantic information, can increase the robustness of DNNs to label noise, more so than AS can. We thus propose early stops at different times for AS and PS by disentangling the features of some layer(s) into AS and PS using Discrete Fourier Transform (DFT) during training. Our proposed Phase-AmplituDe DisentangLed Early Stopping (PADDLES) method is shown to be effective on both synthetic and real-world label-noise datasets. PADDLES outperforms other early stopping methods and obtains state-of-the-art performance.
Abstract:Multi-modal reasoning in visual question answering (VQA) has witnessed rapid progress recently. However, most reasoning models heavily rely on shortcuts learned from training data, which prevents their usage in challenging real-world scenarios. In this paper, we propose a simple but effective cross-modal contrastive learning strategy to get rid of the shortcut reasoning caused by imbalanced annotations and improve the overall performance. Different from existing contrastive learning with complex negative categories on coarse (Image, Question, Answer) triplet level, we leverage the correspondences between the language and image modalities to perform finer-grained cross-modal contrastive learning. We treat each Question-Answer (QA) pair as a whole, and differentiate between images that conform with it and those against it. To alleviate the issue of sampling bias, we further build connected graphs among images. For each positive pair, we regard the images from different graphs as negative samples and deduct the version of multi-positive contrastive learning. To our best knowledge, it is the first paper that reveals a general contrastive learning strategy without delicate hand-craft rules can contribute to robust VQA reasoning. Experiments on several mainstream VQA datasets demonstrate our superiority compared to the state of the arts. Code is available at \url{https://github.com/qizhust/cmcl_vqa_pl}.
Abstract:Deep learning technology can be used as an assistive technology to help doctors quickly and accurately identify COVID-19 infections. Recently, Vision Transformer (ViT) has shown great potential towards image classification due to its global receptive field. However, due to the lack of inductive biases inherent to CNNs, the ViT-based structure leads to limited feature richness and difficulty in model training. In this paper, we propose a new structure called Transformer for COVID-19 (COVT) to improve the performance of ViT-based architectures on small COVID-19 datasets. It uses CNN as a feature extractor to effectively extract local structural information, and introduces average pooling to ViT's Multilayer Perception(MLP) module for global information. Experiments show the effectiveness of our method on the two COVID-19 datasets and the ImageNet dataset.