Carnegie Mellon University
Abstract:High-resolution images are preferable in medical imaging domain as they significantly improve the diagnostic capability of the underlying method. In particular, high resolution helps substantially in improving automatic image segmentation. However, most of the existing deep learning-based techniques for medical image segmentation are optimized for input images having small spatial dimensions and perform poorly on high-resolution images. To address this shortcoming, we propose a parallel-in-branch architecture called TransResNet, which incorporates Transformer and CNN in a parallel manner to extract features from multi-resolution images independently. In TransResNet, we introduce Cross Grafting Module (CGM), which generates the grafted features, enriched in both global semantic and low-level spatial details, by combining the feature maps from Transformer and CNN branches through fusion and self-attention mechanism. Moreover, we use these grafted features in the decoding process, increasing the information flow for better prediction of the segmentation mask. Extensive experiments on ten datasets demonstrate that TransResNet achieves either state-of-the-art or competitive results on several segmentation tasks, including skin lesion, retinal vessel, and polyp segmentation. The source code and pre-trained models are available at https://github.com/Sharifmhamza/TransResNet.
Abstract:Recent attention-based volumetric segmentation (VS) methods have achieved remarkable performance in the medical domain which focuses on modeling long-range dependencies. However, for voxel-wise prediction tasks, discriminative local features are key components for the performance of the VS models which is missing in attention-based VS methods. Aiming at resolving this issue, we deliberately incorporate the convolutional encoder branch with transformer backbone to extract local and global features in a parallel manner and aggregate them in Cross Feature Mixer Module (CFMM) for better prediction of segmentation mask. Consequently, we observe that the derived model, Y-CT-Net, achieves competitive performance on multiple medical segmentation tasks. For example, on multi-organ segmentation, Y-CT-Net achieves an 82.4% dice score, surpassing well-tuned VS Transformer/CNN-like baselines UNETR/ResNet-3D by 2.9%/1.4%. With the success of Y-CT-Net, we extend this concept with hybrid attention models, that derived Y-CH-Net model, which brings a 3% improvement in terms of HD95 score for same segmentation task. The effectiveness of both models Y-CT-Net and Y-CH-Net verifies our hypothesis and motivates us to initiate the concept of Y-CA-Net, a versatile generic architecture based upon any two encoders and a decoder backbones, to fully exploit the complementary strengths of both convolution and attention mechanisms. Based on experimental results, we argue Y-CA-Net is a key player in achieving superior results for volumetric segmentation.
Abstract:Generalized Category Discovery (GCD) aims to classify inputs into both known and novel categories, a task crucial for open-world scientific discoveries. However, current GCD methods are limited to unimodal data, overlooking the inherently multimodal nature of most real-world data. In this work, we extend GCD to a multimodal setting, where inputs from different modalities provide richer and complementary information. Through theoretical analysis and empirical validation, we identify that the key challenge in multimodal GCD lies in effectively aligning heterogeneous information across modalities. To address this, we propose MM-GCD, a novel framework that aligns both the feature and output spaces of different modalities using contrastive learning and distillation techniques. MM-GCD achieves new state-of-the-art performance on the UPMC-Food101 and N24News datasets, surpassing previous methods by 11.5\% and 4.7\%, respectively.
Abstract:Cross-domain recommendation (CDR) aims to improve recommendation accuracy in sparse domains by transferring knowledge from data-rich domains. However, existing CDR methods often assume the availability of user-item interaction data across domains, overlooking user privacy concerns. Furthermore, these methods suffer from performance degradation in scenarios with sparse overlapping users, as they typically depend on a large number of fully shared users for effective knowledge transfer. To address these challenges, we propose a Federated Prototype-based Contrastive Learning (CL) method for Privacy-Preserving CDR, named FedPCL-CDR. This approach utilizes non-overlapping user information and prototypes to improve multi-domain performance while protecting user privacy. FedPCL-CDR comprises two modules: local domain (client) learning and global server aggregation. In the local domain, FedPCL-CDR clusters all user data to learn representative prototypes, effectively utilizing non-overlapping user information and addressing the sparse overlapping user issue. It then facilitates knowledge transfer by employing both local and global prototypes returned from the server in a CL manner. Simultaneously, the global server aggregates representative prototypes from local domains to learn both local and global prototypes. The combination of prototypes and federated learning (FL) ensures that sensitive user data remains decentralized, with only prototypes being shared across domains, thereby protecting user privacy. Extensive experiments on four CDR tasks using two real-world datasets demonstrate that FedPCL-CDR outperforms the state-of-the-art baselines.
Abstract:Large language models (LLMs) and retrieval-augmented generation (RAG) techniques have revolutionized traditional information access, enabling AI agent to search and summarize information on behalf of users during dynamic dialogues. Despite their potential, current AI search engines exhibit considerable room for improvement in several critical areas. These areas include the support for multimodal information, the delivery of personalized responses, the capability to logically answer complex questions, and the facilitation of more flexible interactions. This paper proposes a novel AI Search Engine framework called the Agent Collaboration Network (ACN). The ACN framework consists of multiple specialized agents working collaboratively, each with distinct roles such as Account Manager, Solution Strategist, Information Manager, and Content Creator. This framework integrates mechanisms for picture content understanding, user profile tracking, and online evolution, enhancing the AI search engine's response quality, personalization, and interactivity. A highlight of the ACN is the introduction of a Reflective Forward Optimization method (RFO), which supports the online synergistic adjustment among agents. This feature endows the ACN with online learning capabilities, ensuring that the system has strong interactive flexibility and can promptly adapt to user feedback. This learning method may also serve as an optimization approach for agent-based systems, potentially influencing other domains of agent applications.
Abstract:Cross-domain recommendation (CDR) aims to address the data-sparsity problem by transferring knowledge across domains. Existing CDR methods generally assume that the user-item interaction data is shareable between domains, which leads to privacy leakage. Recently, some privacy-preserving CDR (PPCDR) models have been proposed to solve this problem. However, they primarily transfer simple representations learned only from user-item interaction histories, overlooking other useful side information, leading to inaccurate user preferences. Additionally, they transfer differentially private user-item interaction matrices or embeddings across domains to protect privacy. However, these methods offer limited privacy protection, as attackers may exploit external information to infer the original data. To address these challenges, we propose a novel Federated User Preference Modeling (FUPM) framework. In FUPM, first, a novel comprehensive preference exploration module is proposed to learn users' comprehensive preferences from both interaction data and additional data including review texts and potentially positive items. Next, a private preference transfer module is designed to first learn differentially private local and global prototypes, and then privately transfer the global prototypes using a federated learning strategy. These prototypes are generalized representations of user groups, making it difficult for attackers to infer individual information. Extensive experiments on four CDR tasks conducted on the Amazon and Douban datasets validate the superiority of FUPM over SOTA baselines. Code is available at https://github.com/Lili1013/FUPM.
Abstract:Modeling feature interactions is crucial for click-through rate (CTR) prediction, particularly when it comes to high-order explicit interactions. Traditional methods struggle with this task because they often predefine a maximum interaction order, which relies heavily on prior knowledge and can limit the model's effectiveness. Additionally, modeling high-order interactions typically leads to increased computational costs. Therefore, the challenge lies in adaptively modeling high-order feature interactions while maintaining efficiency. To address this issue, we introduce Kolmogorov-Arnold Represented Sparse Efficient Interaction Network (KarSein), designed to optimize both predictive accuracy and computational efficiency. We firstly identify limitations of directly applying Kolmogorov-Arnold Networks (KAN) to CTR and then introduce KarSein to overcome these issues. It features a novel architecture that reduces the computational costs of KAN and supports embedding vectors as feature inputs. Additionally, KarSein employs guided symbolic regression to address the challenge of KAN in spontaneously learning multiplicative relationships. Extensive experiments demonstrate KarSein's superior performance, achieving significant predictive accuracy with minimal computational overhead. Furthermore, KarSein maintains strong global explainability while enabling the removal of redundant features, resulting in a sparse network structure. These advantages also position KarSein as a promising method for efficient inference.
Abstract:Object parts serve as crucial intermediate representations in various downstream tasks, but part-level representation learning still has not received as much attention as other vision tasks. Previous research has established that Vision Transformer can learn instance-level attention without labels, extracting high-quality instance-level representations for boosting downstream tasks. In this paper, we achieve unsupervised part-specific attention learning using a novel paradigm and further employ the part representations to improve part discovery performance. Specifically, paired images are generated from the same image with different geometric transformations, and multiple part representations are extracted from these paired images using a novel module, named PartFormer. These part representations from the paired images are then exchanged to improve geometric transformation invariance. Subsequently, the part representations are aligned with the feature map extracted by a feature map encoder, achieving high similarity with the pixel representations of the corresponding part regions and low similarity in irrelevant regions. Finally, the geometric and semantic constraints are applied to the part representations through the intermediate results in alignment for part-specific attention learning, encouraging the PartFormer to focus locally and the part representations to explicitly include the information of the corresponding parts. Moreover, the aligned part representations can further serve as a series of reliable detectors in the testing phase, predicting pixel masks for part discovery. Extensive experiments are carried out on four widely used datasets, and our results demonstrate that the proposed method achieves competitive performance and robustness due to its part-specific attention.
Abstract:Video Anomaly Detection (VAD) automates the identification of unusual events, such as security threats in surveillance videos. In real-world applications, VAD models must effectively operate in cross-domain settings, identifying rare anomalies and scenarios not well-represented in the training data. However, existing cross-domain VAD methods focus on unsupervised learning, resulting in performance that falls short of real-world expectations. Since acquiring weak supervision, i.e., video-level labels, for the source domain is cost-effective, we conjecture that combining it with external unlabeled data has notable potential to enhance cross-domain performance. To this end, we introduce a novel weakly-supervised framework for Cross-Domain Learning (CDL) in VAD that incorporates external data during training by estimating its prediction bias and adaptively minimizing that using the predicted uncertainty. We demonstrate the effectiveness of the proposed CDL framework through comprehensive experiments conducted in various configurations on two large-scale VAD datasets: UCF-Crime and XD-Violence. Our method significantly surpasses the state-of-the-art works in cross-domain evaluations, achieving an average absolute improvement of 19.6% on UCF-Crime and 12.87% on XD-Violence.
Abstract:Retrieval-augmented generation (RAG) techniques leverage the in-context learning capabilities of large language models (LLMs) to produce more accurate and relevant responses. Originating from the simple 'retrieve-then-read' approach, the RAG framework has evolved into a highly flexible and modular paradigm. A critical component, the Query Rewriter module, enhances knowledge retrieval by generating a search-friendly query. This method aligns input questions more closely with the knowledge base. Our research identifies opportunities to enhance the Query Rewriter module to Query Rewriter+ by generating multiple queries to overcome the Information Plateaus associated with a single query and by rewriting questions to eliminate Ambiguity, thereby clarifying the underlying intent. We also find that current RAG systems exhibit issues with Irrelevant Knowledge; to overcome this, we propose the Knowledge Filter. These two modules are both based on the instruction-tuned Gemma-2B model, which together enhance response quality. The final identified issue is Redundant Retrieval; we introduce the Memory Knowledge Reservoir and the Retriever Trigger to solve this. The former supports the dynamic expansion of the RAG system's knowledge base in a parameter-free manner, while the latter optimizes the cost for accessing external knowledge, thereby improving resource utilization and response efficiency. These four RAG modules synergistically improve the response quality and efficiency of the RAG system. The effectiveness of these modules has been validated through experiments and ablation studies across six common QA datasets. The source code can be accessed at https://github.com/Ancientshi/ERM4.