Abstract:With the advent of the big data and large language model era, zero-shot personalized rapid customization has emerged as a significant trend. In this report, we introduce Takin AudioLLM, a series of techniques and models, mainly including Takin TTS, Takin VC, and Takin Morphing, specifically designed for audiobook production. These models are capable of zero-shot speech production, generating high-quality speech that is nearly indistinguishable from real human speech and facilitating individuals to customize the speech content according to their own needs. Specifically, we first introduce Takin TTS, a neural codec language model that builds upon an enhanced neural speech codec and a multi-task training framework, capable of generating high-fidelity natural speech in a zero-shot way. For Takin VC, we advocate an effective content and timbre joint modeling approach to improve the speaker similarity, while advocating for a conditional flow matching based decoder to further enhance its naturalness and expressiveness. Last, we propose the Takin Morphing system with highly decoupled and advanced timbre and prosody modeling approaches, which enables individuals to customize speech production with their preferred timbre and prosody in a precise and controllable manner. Extensive experiments validate the effectiveness and robustness of our Takin AudioLLM series models. For detailed demos, please refer to https://takinaudiollm.github.io.
Abstract:This paper presents a sophisticated reconfigurable metasurface architecture that introduces an advanced concept of flexible full-array space-time wavefront manipulation with enhanced dynamic capabilities. The practical 2-bit phase-shifting unit cell on the RIS is distinguished by its ability to maintain four stable phase states, each with ${90^ \circ }$ differences, and features an insertion loss of less than 0.6 dB across a bandwidth of 200 MHz. All reconfigurable units are equipped with meticulously designed control circuits, governed by an intelligent core composed of multiple Micro-Controller Units (MCUs), enabling rapid control response across the entire RIS array. Owing to the capability of each unit cell on the metasurface to independently switch states, the entire RIS is not limited to controlling general beams with specific directional patterns, but also generates beams with more complex structures, including multi-focus 3D spot beams and vortex beams. This development substantially broadens its applicability across various industrial wireless transmission scenarios. Moreover, by leveraging the rapid-respond space-time coding and the full-array independent programmability of the RIS prototyping operating at 10.7 GHz, we have demonstrated that: 1) The implementation of 3D spot beams scanning facilitates dynamic beam tracking and real-time communication under the indoor near-field scenario; 2) The rapid wavefront rotation of vortex beams enables precise modulation of signals within the Doppler domain, showcasing an innovative approach to wireless signal manipulation; 3) The beam steering experiments for blocking users under outdoor far-field scenarios, verifying the beamforming capability of the RIS board.
Abstract:Large Language Models have excelled in various fields but encounter efficiency limitations due to the extensive KV cache required for long sequences inference. Many efforts try to evict non-critical cache elements during runtime, thereby reducing cache size within a given memory budget while preserving generation quality. Our reexamination of their underlying principles discerns that prevailing strategies essentially aim to minimize an upper bound of eviction loss within a specific budget allocation. However, we observe that the current practice of uniformly allocating budgets across different attention heads during the eviction procedure tends to degrade the quality of generation posten-eviction. In light of these findings, we propose a simple yet effective adaptive allocation algorithm that not only theoretically ensures its loss upper bound does not exceed that of previous uniform allocation methods, but also effectively aligns with the characteristics of the self-attention mechanism, thus practically reducing the upper bound. Further, integrating this algorithm with two of the most advanced methods yields Ada-SnapKV and Ada-Pyramid. Extensive experimental validation across 16 datasets and the Needle-in-a-Haystack test confirm that Ada-SnapKV and Ada-Pyramid achieve further enhancements, establishing new benchmarks in state-of-the-art performance.
Abstract:In this paper, we propose an environment sensing-aided beam prediction model for smart factory that can be transferred from given environments to a new environment. In particular, we first design a pre-training model that predicts the optimal beam by sensing the present environmental information. When encountering a new environment, it generally requires collecting a large amount of new training data to retrain the model, whose cost severely impedes the application of the designed pre-training model. Therefore, we next design a transfer learning strategy that fine-tunes the pre-trained model by limited labeled data of the new environment. Simulation results show that when the pre-trained model is fine-tuned by 30\% of labeled data from the new environment, the Top-10 beam prediction accuracy reaches 94\%. Moreover, compared with the way to completely re-training the prediction model, the amount of training data and the time cost of the proposed transfer learning strategy reduce 70\% and 75\% respectively.
Abstract:This article explores how to drive intelligent iot monitoring and control through cloud computing and machine learning. As iot and the cloud continue to generate large and diverse amounts of data as sensor devices in the network, the collected data is sent to the cloud for statistical analysis, prediction, and data analysis to achieve business objectives. However, because the cloud computing model is limited by distance, it can be problematic in environments where the quality of the Internet connection is not ideal for critical operations. Therefore, edge computing, as a distributed computing architecture, moves the location of processing applications, data and services from the central node of the network to the logical edge node of the network to reduce the dependence on cloud processing and analysis of data, and achieve near-end data processing and analysis. The combination of iot and edge computing can reduce latency, improve efficiency, and enhance security, thereby driving the development of intelligent systems. The paper also introduces the development of iot monitoring and control technology, the application of edge computing in iot monitoring and control, and the role of machine learning in data analysis and fault detection. Finally, the application and effect of intelligent Internet of Things monitoring and control system in industry, agriculture, medical and other fields are demonstrated through practical cases and experimental studies.
Abstract:To enable large-scale and efficient deployment of artificial intelligence (AI), the combination of AI and edge computing has spawned Edge Intelligence, which leverages the computing and communication capabilities of end devices and edge servers to process data closer to where it is generated. A key technology for edge intelligence is the privacy-protecting machine learning paradigm known as Federated Learning (FL), which enables data owners to train models without having to transfer raw data to third-party servers. However, FL networks are expected to involve thousands of heterogeneous distributed devices. As a result, communication efficiency remains a key bottleneck. To reduce node failures and device exits, a Hierarchical Federated Learning (HFL) framework is proposed, where a designated cluster leader supports the data owner through intermediate model aggregation. Therefore, based on the improvement of edge server resource utilization, this paper can effectively make up for the limitation of cache capacity. In order to mitigate the impact of soft clicks on the quality of user experience (QoE), the authors model the user QoE as a comprehensive system cost. To solve the formulaic problem, the authors propose a decentralized caching algorithm with federated deep reinforcement learning (DRL) and federated learning (FL), where multiple agents learn and make decisions independently
Abstract:The 2nd Workshop on Maritime Computer Vision (MaCVi) 2024 addresses maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicles (USV). Three challenges categories are considered: (i) UAV-based Maritime Object Tracking with Re-identification, (ii) USV-based Maritime Obstacle Segmentation and Detection, (iii) USV-based Maritime Boat Tracking. The USV-based Maritime Obstacle Segmentation and Detection features three sub-challenges, including a new embedded challenge addressing efficicent inference on real-world embedded devices. This report offers a comprehensive overview of the findings from the challenges. We provide both statistical and qualitative analyses, evaluating trends from over 195 submissions. All datasets, evaluation code, and the leaderboard are available to the public at https://macvi.org/workshop/macvi24.
Abstract:Existing few-shot segmentation methods are based on the meta-learning strategy and extract instance knowledge from a support set and then apply the knowledge to segment target objects in a query set. However, the extracted knowledge is insufficient to cope with the variable intra-class differences since the knowledge is obtained from a few samples in the support set. To address the problem, we propose a multi-information aggregation network (MIANet) that effectively leverages the general knowledge, i.e., semantic word embeddings, and instance information for accurate segmentation. Specifically, in MIANet, a general information module (GIM) is proposed to extract a general class prototype from word embeddings as a supplement to instance information. To this end, we design a triplet loss that treats the general class prototype as an anchor and samples positive-negative pairs from local features in the support set. The calculated triplet loss can transfer semantic similarities among language identities from a word embedding space to a visual representation space. To alleviate the model biasing towards the seen training classes and to obtain multi-scale information, we then introduce a non-parametric hierarchical prior module (HPM) to generate unbiased instance-level information via calculating the pixel-level similarity between the support and query image features. Finally, an information fusion module (IFM) combines the general and instance information to make predictions for the query image. Extensive experiments on PASCAL-5i and COCO-20i show that MIANet yields superior performance and set a new state-of-the-art. Code is available at https://github.com/Aldrich2y/MIANet.
Abstract:In this paper, we provide two views of constrained differential private (DP) mechanisms. The first one is as belief revision. A constrained DP mechanism is obtained by standard probabilistic conditioning, and hence can be naturally implemented by Monte Carlo algorithms. The other is as belief update. A constrained DP is defined according to l2-distance minimization postprocessing or projection and hence can be naturally implemented by optimization algorithms. The main advantage of these two perspectives is that we can make full use of the machinery of belief revision and update to show basic properties for constrained differential privacy especially some important new composition properties. Within the framework established in this paper, constrained DP algorithms in the literature can be classified either as belief revision or belief update. At the end of the paper, we demonstrate their differences especially in utility in a couple of scenarios.
Abstract:Transformers gain popularity because of their superior prediction accuracy and inference throughput. However, the transformer is computation-intensive, causing a long inference time. The existing work to accelerate transformer inferences has limitations because of the changes to transformer architectures or the need for specialized hardware. In this paper, we identify the opportunities of using memoization to accelerate the attention mechanism in transformers without the above limitation. Built upon a unique observation that there is a rich similarity in attention computation across inference sequences, we build an attention database upon the emerging big memory system. We introduce the embedding technique to find semantically similar inputs to identify computation similarity. We also introduce a series of techniques such as memory mapping and selective memoization to avoid memory copy and unnecessary overhead. We enable 21% performance improvement on average (up to 68%) with the TB-scale attention database and with ignorable loss in inference accuracy.