Henry
Abstract:The predictions of click through rate (CTR) and conversion rate (CVR) play a crucial role in the success of ad-recommendation systems. A Deep Hierarchical Ensemble Network (DHEN) has been proposed to integrate multiple feature crossing modules and has achieved great success in CTR prediction. However, its performance for CVR prediction is unclear in the conversion ads setting, where an ad bids for the probability of a user's off-site actions on a third party website or app, including purchase, add to cart, sign up, etc. A few challenges in DHEN: 1) What feature-crossing modules (MLP, DCN, Transformer, to name a few) should be included in DHEN? 2) How deep and wide should DHEN be to achieve the best trade-off between efficiency and efficacy? 3) What hyper-parameters to choose in each feature-crossing module? Orthogonal to the model architecture, the input personalization features also significantly impact model performance with a high degree of freedom. In this paper, we attack this problem and present our contributions biased to the applied data science side, including: First, we propose a multitask learning framework with DHEN as the single backbone model architecture to predict all CVR tasks, with a detailed study on how to make DHEN work effectively in practice; Second, we build both on-site real-time user behavior sequences and off-site conversion event sequences for CVR prediction purposes, and conduct ablation study on its importance; Last but not least, we propose a self-supervised auxiliary loss to predict future actions in the input sequence, to help resolve the label sparseness issue in CVR prediction. Our method achieves state-of-the-art performance compared to previous single feature crossing modules with pre-trained user personalization features.
Abstract:Machine learning (ML) powered network traffic analysis has been widely used for the purpose of threat detection. Unfortunately, their generalization across different tasks and unseen data is very limited. Large language models (LLMs), known for their strong generalization capabilities, have shown promising performance in various domains. However, their application to the traffic analysis domain is limited due to significantly different characteristics of network traffic. To address the issue, in this paper, we propose TrafficLLM, which introduces a dual-stage fine-tuning framework to learn generic traffic representation from heterogeneous raw traffic data. The framework uses traffic-domain tokenization, dual-stage tuning pipeline, and extensible adaptation to help LLM release generalization ability on dynamic traffic analysis tasks, such that it enables traffic detection and traffic generation across a wide range of downstream tasks. We evaluate TrafficLLM across 10 distinct scenarios and 229 types of traffic. TrafficLLM achieves F1-scores of 0.9875 and 0.9483, with up to 80.12% and 33.92% better performance than existing detection and generation methods. It also shows strong generalization on unseen traffic with an 18.6% performance improvement. We further evaluate TrafficLLM in real-world scenarios. The results confirm that TrafficLLM is easy to scale and achieves accurate detection performance on enterprise traffic.
Abstract:Large vision-language models (LVLMs) have demonstrated remarkable achievements, yet the generation of non-factual responses remains prevalent in fact-seeking question answering (QA). Current multimodal fact-seeking benchmarks primarily focus on comparing model outputs to ground truth answers, providing limited insights into the performance of modality-specific modules. To bridge this gap, we introduce VisualSimpleQA, a multimodal fact-seeking benchmark with two key features. First, it enables streamlined and decoupled evaluation of LVLMs in visual and linguistic modalities. Second, it incorporates well-defined difficulty criteria to guide human annotation and facilitates the extraction of a challenging subset, VisualSimpleQA-hard. Experiments on 15 LVLMs show that even state-of-the-art models such as GPT-4o achieve merely 60%+ correctness in multimodal fact-seeking QA on VisualSimpleQA and 30%+ on VisualSimpleQA-hard. Furthermore, the decoupled evaluation across these models highlights substantial opportunities for improvement in both visual and linguistic modules. The dataset is available at https://huggingface.co/datasets/WYLing/VisualSimpleQA.
Abstract:With the emerging of huge amount of unlabeled data, unsupervised out-of-distribution (OOD) detection is vital for ensuring the reliability of graph neural networks (GNNs) by identifying OOD samples from in-distribution (ID) ones during testing, where encountering novel or unknown data is inevitable. Existing methods often suffer from compromised performance due to redundant information in graph structures, which impairs their ability to effectively differentiate between ID and OOD data. To address this challenge, we propose SEGO, an unsupervised framework that integrates structural entropy into OOD detection regarding graph classification. Specifically, within the architecture of contrastive learning, SEGO introduces an anchor view in the form of coding tree by minimizing structural entropy. The obtained coding tree effectively removes redundant information from graphs while preserving essential structural information, enabling the capture of distinct graph patterns between ID and OOD samples. Furthermore, we present a multi-grained contrastive learning scheme at local, global, and tree levels using triplet views, where coding trees with essential information serve as the anchor view. Extensive experiments on real-world datasets validate the effectiveness of SEGO, demonstrating superior performance over state-of-the-art baselines in OOD detection. Specifically, our method achieves the best performance on 9 out of 10 dataset pairs, with an average improvement of 3.7\% on OOD detection datasets, significantly surpassing the best competitor by 10.8\% on the FreeSolv/ToxCast dataset pair.
Abstract:Collaborative filtering models, particularly graph-based approaches, have demonstrated strong performance in capturing user-item interactions for recommendation systems. However, they continue to struggle in cold-start and data-sparse scenarios. The emergence of large language models (LLMs) like GPT and LLaMA presents new possibilities for enhancing recommendation performance, especially in cold-start settings. Despite their promise, LLMs pose challenges related to scalability and efficiency due to their high computational demands and limited ability to model complex user-item relationships effectively. In this work, we introduce a novel perspective on leveraging LLMs for CF model initialization. Through experiments, we uncover an embedding collapse issue when scaling CF models to larger embedding dimensions. To effectively harness large-scale LLM embeddings, we propose innovative selective initialization strategies utilizing random, uniform, and variance-based index sampling. Our comprehensive evaluation on multiple real-world datasets demonstrates significant performance gains across various CF models while maintaining a lower computational cost compared to existing LLM-based recommendation approaches.
Abstract:Advancements in mobility services, navigation systems, and smart transportation technologies have made it possible to collect large amounts of path data. Modeling the distribution of this path data, known as the Path Generation (PG) problem, is crucial for understanding urban mobility patterns and developing intelligent transportation systems. Recent studies have explored using diffusion models to address the PG problem due to their ability to capture multimodal distributions and support conditional generation. A recent work devises a diffusion process explicitly in graph space and achieves state-of-the-art performance. However, this method suffers a high computation cost in terms of both time and memory, which prohibits its application. In this paper, we analyze this method both theoretically and experimentally and find that the main culprit of its high computation cost is its explicit design of the diffusion process in graph space. To improve efficiency, we devise a Latent-space Path Diffusion (LPD) model, which operates in latent space instead of graph space. Our LPD significantly reduces both time and memory costs by up to 82.8% and 83.1%, respectively. Despite these reductions, our approach does not suffer from performance degradation. It outperforms the state-of-the-art method in most scenarios by 24.5%~34.0%.
Abstract:Statistical inference for tensors has emerged as a critical challenge in analyzing high-dimensional data in modern data science. This paper introduces a unified framework for inferring general and low-Tucker-rank linear functionals of low-Tucker-rank signal tensors for several low-rank tensor models. Our methodology tackles two primary goals: achieving asymptotic normality and constructing minimax-optimal confidence intervals. By leveraging a debiasing strategy and projecting onto the tangent space of the low-Tucker-rank manifold, we enable inference for general and structured linear functionals, extending far beyond the scope of traditional entrywise inference. Specifically, in the low-Tucker-rank tensor regression or PCA model, we establish the computational and statistical efficiency of our approach, achieving near-optimal sample size requirements (in regression model) and signal-to-noise ratio (SNR) conditions (in PCA model) for general linear functionals without requiring sparsity in the loading tensor. Our framework also attains both computationally and statistically optimal sample size and SNR thresholds for low-Tucker-rank linear functionals. Numerical experiments validate our theoretical results, showcasing the framework's utility in diverse applications. This work addresses significant methodological gaps in statistical inference, advancing tensor analysis for complex and high-dimensional data environments.
Abstract:Trapped by the label scarcity in molecular property prediction and drug design, graph contrastive learning (GCL) came forward. Leading contrastive learning works show two kinds of view generators, that is, random or learnable data corruption and domain knowledge incorporation. While effective, the two ways also lead to molecular semantics altering and limited generalization capability, respectively. To this end, we relate the \textbf{L}in\textbf{E} graph with \textbf{MO}lecular graph co\textbf{N}trastive learning and propose a novel method termed \textit{LEMON}. Specifically, by contrasting the given graph with the corresponding line graph, the graph encoder can freely encode the molecular semantics without omission. Furthermore, we present a new patch with edge attribute fusion and two local contrastive losses enhance information transmission and tackle hard negative samples. Compared with state-of-the-art (SOTA) methods for view generation, superior performance on molecular property prediction suggests the effectiveness of our proposed framework.
Abstract:The rise of End-Edge-Cloud Collaboration (EECC) offers a promising paradigm for Artificial Intelligence (AI) model training across end devices, edge servers, and cloud data centers, providing enhanced reliability and reduced latency. Hierarchical Federated Learning (HFL) can benefit from this paradigm by enabling multi-tier model aggregation across distributed computing nodes. However, the potential of HFL is significantly constrained by the inherent heterogeneity and dynamic characteristics of EECC environments. Specifically, the uniform model structure bounded by the least powerful end device across all computing nodes imposes a performance bottleneck. Meanwhile, coupled heterogeneity in data distributions and resource capabilities across tiers disrupts hierarchical knowledge transfer, leading to biased updates and degraded performance. Furthermore, the mobility and fluctuating connectivity of computing nodes in EECC environments introduce complexities in dynamic node migration, further compromising the robustness of the training process. To address multiple challenges within a unified framework, we propose End-Edge-Cloud Federated Learning with Self-Rectified Knowledge Agglomeration (FedEEC), which is a novel EECC-empowered FL framework that allows the trained models from end, edge, to cloud to grow larger in size and stronger in generalization ability. FedEEC introduces two key innovations: (1) Bridge Sample Based Online Distillation Protocol (BSBODP), which enables knowledge transfer between neighboring nodes through generated bridge samples, and (2) Self-Knowledge Rectification (SKR), which refines the transferred knowledge to prevent suboptimal cloud model optimization. The proposed framework effectively handles both cross-tier resource heterogeneity and effective knowledge transfer between neighboring nodes, while satisfying the migration-resilient requirements of EECC.
Abstract:Auto-regressive large language models (LLMs) have yielded impressive performance in many real-world tasks. However, the new paradigm of these LLMs also exposes novel threats. In this paper, we explore their vulnerability to inference cost attacks, where a malicious user crafts Engorgio prompts to intentionally increase the computation cost and latency of the inference process. We design Engorgio, a novel methodology, to efficiently generate adversarial Engorgio prompts to affect the target LLM's service availability. Engorgio has the following two technical contributions. (1) We employ a parameterized distribution to track LLMs' prediction trajectory. (2) Targeting the auto-regressive nature of LLMs' inference process, we propose novel loss functions to stably suppress the appearance of the <EOS> token, whose occurrence will interrupt the LLM's generation process. We conduct extensive experiments on 13 open-sourced LLMs with parameters ranging from 125M to 30B. The results show that Engorgio prompts can successfully induce LLMs to generate abnormally long outputs (i.e., roughly 2-13$\times$ longer to reach 90%+ of the output length limit) in a white-box scenario and our real-world experiment demonstrates Engergio's threat to LLM service with limited computing resources. The code is accessible at https://github.com/jianshuod/Engorgio-prompt.