Abstract:Machine learning (ML) powered network traffic analysis has been widely used for the purpose of threat detection. Unfortunately, their generalization across different tasks and unseen data is very limited. Large language models (LLMs), known for their strong generalization capabilities, have shown promising performance in various domains. However, their application to the traffic analysis domain is limited due to significantly different characteristics of network traffic. To address the issue, in this paper, we propose TrafficLLM, which introduces a dual-stage fine-tuning framework to learn generic traffic representation from heterogeneous raw traffic data. The framework uses traffic-domain tokenization, dual-stage tuning pipeline, and extensible adaptation to help LLM release generalization ability on dynamic traffic analysis tasks, such that it enables traffic detection and traffic generation across a wide range of downstream tasks. We evaluate TrafficLLM across 10 distinct scenarios and 229 types of traffic. TrafficLLM achieves F1-scores of 0.9875 and 0.9483, with up to 80.12% and 33.92% better performance than existing detection and generation methods. It also shows strong generalization on unseen traffic with an 18.6% performance improvement. We further evaluate TrafficLLM in real-world scenarios. The results confirm that TrafficLLM is easy to scale and achieves accurate detection performance on enterprise traffic.
Abstract:Meta-Continual Learning (Meta-CL) has emerged as a promising approach to minimize manual labeling efforts and system resource requirements by enabling Continual Learning (CL) with limited labeled samples. However, while existing methods have shown success in image-based tasks, their effectiveness remains unexplored for sequential time-series data from sensor systems, particularly audio inputs. To address this gap, we conduct a comprehensive benchmark study evaluating six representative Meta-CL approaches using three network architectures on five datasets from both image and audio modalities. We develop MetaCLBench, an end-to-end Meta-CL benchmark framework for edge devices to evaluate system overheads and investigate trade-offs among performance, computational costs, and memory requirements across various Meta-CL methods. Our results reveal that while many Meta-CL methods enable to learn new classes for both image and audio modalities, they impose significant computational and memory costs on edge devices. Also, we find that pre-training and meta-training procedures based on source data before deployment improve Meta-CL performance. Finally, to facilitate further research, we provide practical guidelines for researchers and machine learning practitioners implementing Meta-CL on resource-constrained environments and make our benchmark framework and tools publicly available, enabling fair evaluation across both accuracy and system-level metrics.
Abstract:In recent years, the fifth-generation (5G) new radio (NR) signals have emerged as a promising supplementary resource for urban navigation. However, a major challenge in utilizing 5G signals lies in their vulnerability to non-line-of-sight (NLoS) propagation effects, which are especially prevalent in urban street canyons. This paper applies the direct position estimation (DPE) method to 5G cellular signals to mitigate the NLoS bias as well as the multipath effects, thereby enabling precise localization in urbanized environments. The feasibility of applying the DPE method to NR positioning is analyzed, followed by a discussion of the tapped delay line (TDL) channel propagation model provided by the 3rd Generation Partnership Project (3GPP). The positioning performance is then evaluated through large-scale system-level simulations. The simulation results demonstrate that 5G DPE achieves satisfactory positioning accuracy in a 10 dB noisy channel, with an overall root mean square error (RMSE) constrained within 6 m. In addition, 5G DPE outperforms the observed time difference of arrival (OTDoA) method by 95.24% in terms of positioning accuracy in an NLoS-dominated propagation environment.
Abstract:This survey explores the fairness of large language models (LLMs) in e-commerce, examining their progress, applications, and the challenges they face. LLMs have become pivotal in the e-commerce domain, offering innovative solutions and enhancing customer experiences. This work presents a comprehensive survey on the applications and challenges of LLMs in e-commerce. The paper begins by introducing the key principles underlying the use of LLMs in e-commerce, detailing the processes of pretraining, fine-tuning, and prompting that tailor these models to specific needs. It then explores the varied applications of LLMs in e-commerce, including product reviews, where they synthesize and analyze customer feedback; product recommendations, where they leverage consumer data to suggest relevant items; product information translation, enhancing global accessibility; and product question and answer sections, where they automate customer support. The paper critically addresses the fairness challenges in e-commerce, highlighting how biases in training data and algorithms can lead to unfair outcomes, such as reinforcing stereotypes or discriminating against certain groups. These issues not only undermine consumer trust, but also raise ethical and legal concerns. Finally, the work outlines future research directions, emphasizing the need for more equitable and transparent LLMs in e-commerce. It advocates for ongoing efforts to mitigate biases and improve the fairness of these systems, ensuring they serve diverse global markets effectively and ethically. Through this comprehensive analysis, the survey provides a holistic view of the current landscape of LLMs in e-commerce, offering insights into their potential and limitations, and guiding future endeavors in creating fairer and more inclusive e-commerce environments.
Abstract:In the era of AIGC, the demand for low-budget or even on-device applications of diffusion models emerged. In terms of compressing the Stable Diffusion models (SDMs), several approaches have been proposed, and most of them leveraged the handcrafted layer removal methods to obtain smaller U-Nets, along with knowledge distillation to recover the network performance. However, such a handcrafting manner of layer removal is inefficient and lacks scalability and generalization, and the feature distillation employed in the retraining phase faces an imbalance issue that a few numerically significant feature loss terms dominate over others throughout the retraining process. To this end, we proposed the layer pruning and normalized distillation for compressing diffusion models (LAPTOP-Diff). We, 1) introduced the layer pruning method to compress SDM's U-Net automatically and proposed an effective one-shot pruning criterion whose one-shot performance is guaranteed by its good additivity property, surpassing other layer pruning and handcrafted layer removal methods, 2) proposed the normalized feature distillation for retraining, alleviated the imbalance issue. Using the proposed LAPTOP-Diff, we compressed the U-Nets of SDXL and SDM-v1.5 for the most advanced performance, achieving a minimal 4.0% decline in PickScore at a pruning ratio of 50% while the comparative methods' minimal PickScore decline is 8.2%. We will release our code.
Abstract:Scene-Text Visual Question Answering (ST-VQA) aims to understand scene text in images and answer questions related to the text content. Most existing methods heavily rely on the accuracy of Optical Character Recognition (OCR) systems, and aggressive fine-tuning based on limited spatial location information and erroneous OCR text information often leads to inevitable overfitting. In this paper, we propose a multimodal adversarial training architecture with spatial awareness capabilities. Specifically, we introduce an Adversarial OCR Enhancement (AOE) module, which leverages adversarial training in the embedding space of OCR modality to enhance fault-tolerant representation of OCR texts, thereby reducing noise caused by OCR errors. Simultaneously, We add a Spatial-Aware Self-Attention (SASA) mechanism to help the model better capture the spatial relationships among OCR tokens. Various experiments demonstrate that our method achieves significant performance improvements on both the ST-VQA and TextVQA datasets and provides a novel paradigm for multimodal adversarial training.
Abstract:Large language models (LLMs) have strong capabilities in solving diverse natural language processing tasks. However, the safety and security issues of LLM systems have become the major obstacle to their widespread application. Many studies have extensively investigated risks in LLM systems and developed the corresponding mitigation strategies. Leading-edge enterprises such as OpenAI, Google, Meta, and Anthropic have also made lots of efforts on responsible LLMs. Therefore, there is a growing need to organize the existing studies and establish comprehensive taxonomies for the community. In this paper, we delve into four essential modules of an LLM system, including an input module for receiving prompts, a language model trained on extensive corpora, a toolchain module for development and deployment, and an output module for exporting LLM-generated content. Based on this, we propose a comprehensive taxonomy, which systematically analyzes potential risks associated with each module of an LLM system and discusses the corresponding mitigation strategies. Furthermore, we review prevalent benchmarks, aiming to facilitate the risk assessment of LLM systems. We hope that this paper can help LLM participants embrace a systematic perspective to build their responsible LLM systems.
Abstract:Recent work found high mutual information between the learned representations of large language models (LLMs) and the geospatial property of its input, hinting an emergent internal model of space. However, whether this internal space model has any causal effects on the LLMs' behaviors was not answered by that work, led to criticism of these findings as mere statistical correlation. Our study focused on uncovering the causality of the spatial representations in LLMs. In particular, we discovered the potential spatial representations in DeBERTa, GPT-Neo using representational similarity analysis and linear and non-linear probing. Our casual intervention experiments showed that the spatial representations influenced the model's performance on next word prediction and a downstream task that relies on geospatial information. Our experiments suggested that the LLMs learn and use an internal model of space in solving geospatial related tasks.
Abstract:Mixture models serve as one fundamental tool with versatile applications. However, their training techniques, like the popular Expectation Maximization (EM) algorithm, are notoriously sensitive to parameter initialization and often suffer from bad local optima that could be arbitrarily worse than the optimal. To address the long-lasting bad-local-optima challenge, we draw inspiration from the recent ground-breaking foundation models and propose to leverage their underlying big learning principle to upgrade the EM. Specifically, we present the Big Learning EM (BigLearn-EM), an EM upgrade that simultaneously performs joint, marginal, and orthogonally transformed marginal matchings between data and model distributions. Through simulated experiments, we empirically show that the BigLearn-EM is capable of delivering the optimal with high probability; comparisons on benchmark clustering datasets further demonstrate its effectiveness and advantages over existing techniques. The code is available at https://github.com/YulaiCong/Big-Learning-Expectation-Maximization.
Abstract:The spatial-temporal distribution of underwater sound velocity affects the propagation mode of underwater acoustic signals. Therefore, rapid estimation and prediction of underwater sound velocity distribution is crucial for providing underwater positioning, navigation and timing (PNT) services. Currently, sound speed profile (SSP) inversion methods have a faster time response rate compared to direct measurement methods, however, most SSP inversion methods focus on constructing spatial dimensional sound velocity fields and are highly dependent on sonar observation data, thus high requirements have been placed on observation data sources. To explore the distribution pattern of sound velocity in the time dimension and achieve future SSP prediction without sonar observation data, we propose a hierarchical long short-term memory (H-LSTM) neural network for SSP prediction. By our SSP prediction method, the sound speed distribution could be estimated without any on-site data measurement process, so that the time efficiency could be greatly improved. Through comparing with other state-of-the-art methods, H-LSTM has better accuracy performance on prediction of monthly average sound velocity distribution, which is less than 1 m/s in different depth layers.