Department of Radiology, Zhejiang Cancer Hospital, Hangzhou, 310022, China, Hangzhou Institute of Medicine
Abstract:Transcatheter tricuspid valve replacement (TTVR) is the latest treatment for tricuspid regurgitation and is in the early stages of clinical adoption. Intelligent robotic approaches are expected to overcome the challenges of surgical manipulation and widespread dissemination, but systems and protocols with high clinical utility have not yet been reported. In this study, we propose a complete solution that includes a passive stabilizer, robotic drive, detachable delivery catheter and valve manipulation mechanism. Working towards autonomy, a hybrid augmented intelligence approach based on reinforcement learning, Monte Carlo probabilistic maps and human-robot co-piloted control was introduced. Systematic tests in phantom and first-in-vivo animal experiments were performed to verify that the system design met the clinical requirement. Furthermore, the experimental results confirmed the advantages of co-piloted control over conventional master-slave control in terms of time efficiency, control efficiency, autonomy and stability of operation. In conclusion, this study provides a comprehensive pathway for robotic TTVR and, to our knowledge, completes the first animal study that not only successfully demonstrates the application of hybrid enhanced intelligence in interventional robotics, but also provides a solution with high application value for a cutting-edge procedure.
Abstract:In this paper, we introduce Motion-Grounded Video Reasoning, a new motion understanding task that requires generating visual answers (video segmentation masks) according to the input question, and hence needs implicit spatiotemporal reasoning and grounding. This task extends existing spatiotemporal grounding work focusing on explicit action/motion grounding, to a more general format by enabling implicit reasoning via questions. To facilitate the development of the new task, we collect a large-scale dataset called GROUNDMORE, which comprises 1,715 video clips, 249K object masks that are deliberately designed with 4 question types (Causal, Sequential, Counterfactual, and Descriptive) for benchmarking deep and comprehensive motion reasoning abilities. GROUNDMORE uniquely requires models to generate visual answers, providing a more concrete and visually interpretable response than plain texts. It evaluates models on both spatiotemporal grounding and reasoning, fostering to address complex challenges in motion-related video reasoning, temporal perception, and pixel-level understanding. Furthermore, we introduce a novel baseline model named Motion-Grounded Video Reasoning Assistant (MORA). MORA incorporates the multimodal reasoning ability from the Multimodal LLM, the pixel-level perception capability from the grounding model (SAM), and the temporal perception ability from a lightweight localization head. MORA achieves respectable performance on GROUNDMORE outperforming the best existing visual grounding baseline model by an average of 21.5% relatively. We hope this novel and challenging task will pave the way for future advancements in robust and general motion understanding via video reasoning segmentation
Abstract:Machine learning has become a crucial tool for predicting the properties of crystalline materials. However, existing methods primarily represent material information by constructing multi-edge graphs of crystal structures, often overlooking the chemical and physical properties of elements (such as atomic radius, electronegativity, melting point, and ionization energy), which have a significant impact on material performance. To address this limitation, we first constructed an element property knowledge graph and utilized an embedding model to encode the element attributes within the knowledge graph. Furthermore, we propose a multimodal fusion framework, ESNet, which integrates element property features with crystal structure features to generate joint multimodal representations. This provides a more comprehensive perspective for predicting the performance of crystalline materials, enabling the model to consider both microstructural composition and chemical characteristics of the materials. We conducted experiments on the Materials Project benchmark dataset, which showed leading performance in the bandgap prediction task and achieved results on a par with existing benchmarks in the formation energy prediction task.
Abstract:The discovery of new materials is very important to the field of materials science. When researchers explore new materials, they often have expected performance requirements for their crystal structure. In recent years, data-driven methods have made great progress in the direction plane of crystal structure generation, but there is still a lack of methods that can effectively map material properties to crystal structure. In this paper, we propose a Crystal DiT model to generate the crystal structure from the expected material properties by embedding the material properties and combining the symmetry information predicted by the large language model. Experimental verification shows that our proposed method has good performance.
Abstract:As the application of large language models in various fields continues to expand, materials science also ushers in opportunities for AI-driven innovation. The traditional way of relying on manual search for materials science-related information is now using artificial intelligence technology as an auxiliary tool to improve the efficiency of materials science research. To accelerate researchers' knowledge acquisition and intelligent decision-making support in materials science research, this paper proposes a large language model Polymetis model for a variety of materials fields, aiming to provide highly professional knowledge answers in the field of materials, covering energy materials, functional materials, alloy materials, physical chemistry, biology, and other material directions. The model uses a dataset of about 2 million material knowledge instructions, and in the process of building the dataset, we developed the Intelligent Extraction Large Model (IELM), which is specially used to extract and form structured knowledge from scientific texts, avoiding a large number of costs that need to be manually annotated, and improving efficiency. We inject this data into the GLM4-9B model for learning to enhance its inference capabilities in a variety of material domains. In addition, we have introduced enhanced prompt strategies to ensure that the answers to the model are more organized and comprehensive, providing efficient and comprehensive intelligent support for the diverse needs of materials science exploration, and promoting the development of material science.
Abstract:Federated Graph Learning (FGL) is tasked with training machine learning models, such as Graph Neural Networks (GNNs), for multiple clients, each with its own graph data. Existing methods usually assume that each client has both node features and graph structure of its graph data. In real-world scenarios, however, there exist federated systems where only a part of the clients have such data while other clients (i.e. graphless clients) may only have node features. This naturally leads to a novel problem in FGL: how to jointly train a model over distributed graph data with graphless clients? In this paper, we propose a novel framework FedGLS to tackle the problem in FGL with graphless clients. In FedGLS, we devise a local graph learner on each graphless client which learns the local graph structure with the structure knowledge transferred from other clients. To enable structure knowledge transfer, we design a GNN model and a feature encoder on each client. During local training, the feature encoder retains the local graph structure knowledge together with the GNN model via knowledge distillation, and the structure knowledge is transferred among clients in global update. Our extensive experiments demonstrate the superiority of the proposed FedGLS over five baselines.
Abstract:Federated Learning (FL) enables collaborative model training across decentralized edge devices while preserving data privacy. However, existing FL methods often assume clean annotated datasets, impractical for resource-constrained edge devices. In reality, noisy labels are prevalent, posing significant challenges to FL performance. Prior approaches attempt label correction and robust training techniques but exhibit limited efficacy, particularly under high noise levels. This paper introduces ClipFL (Federated Learning Client Pruning), a novel framework addressing noisy labels from a fresh perspective. ClipFL identifies and excludes noisy clients based on their performance on a clean validation dataset, tracked using a Noise Candidacy Score (NCS). The framework comprises three phases: pre-client pruning to identify potential noisy clients and calculate their NCS, client pruning to exclude a percentage of clients with the highest NCS, and post-client pruning for fine-tuning the global model with standard FL on clean clients. Empirical evaluation demonstrates ClipFL's efficacy across diverse datasets and noise levels, achieving accurate noisy client identification, superior performance, faster convergence, and reduced communication costs compared to state-of-the-art FL methods. Our code is available at https://github.com/MMorafah/ClipFL.
Abstract:In the era of foundation models, we revisit continual learning~(CL), which aims to enable vision transformers (ViTs) to learn new tasks over time. However, as the scale of these models increases, catastrophic forgetting remains a persistent challenge, particularly in the presence of significant domain shifts across tasks. Recent studies highlight a crossover between CL techniques and parameter-efficient fine-tuning (PEFT), which focuses on fine-tuning only a small set of trainable parameters to adapt to downstream tasks, such as low-rank adaptation (LoRA). While LoRA achieves faster convergence and requires fewer trainable parameters, it has seldom been explored in the context of continual learning. To address this gap, we propose a novel PEFT-CL method called Dual Low-Rank Adaptation (DualLoRA), which introduces both an orthogonal LoRA adapter and a residual LoRA adapter parallel to pre-trained weights in each layer. These components are orchestrated by a dynamic memory mechanism to strike a balance between stability and plasticity. The orthogonal LoRA adapter's parameters are updated in an orthogonal subspace of previous tasks to mitigate catastrophic forgetting, while the residual LoRA adapter's parameters are updated in the residual subspace spanned by task-specific bases without interaction across tasks, offering complementary capabilities for fine-tuning new tasks. On ViT-based models, we demonstrate that DualLoRA offers significant advantages in accuracy, inference speed, and memory efficiency over existing CL methods across multiple benchmarks.
Abstract:In order to make full use of video information, we transform the replay grounding problem into a video action location problem. We apply a unified network Faster-TAD proposed by us for temporal action detection to get the results of replay grounding. Finally, by observing the data distribution of the training data, we refine the output of the model to get the final submission.
Abstract:In the task of temporal action localization of ActivityNet-1.3 datasets, we propose to locate the temporal boundaries of each action and predict action class in untrimmed videos. We first apply VideoSwinTransformer as feature extractor to extract different features. Then we apply a unified network following Faster-TAD to simultaneously obtain proposals and semantic labels. Last, we ensemble the results of different temporal action detection models which complement each other. Faster-TAD simplifies the pipeline of TAD and gets remarkable performance, obtaining comparable results as those of multi-step approaches.