Abstract:Existing methods to generate aesthetic QR codes, such as image and style transfer techniques, tend to compromise either the visual appeal or the scannability of QR codes when they incorporate human face identity. Addressing these imperfections, we present Face2QR-a novel pipeline specifically designed for generating personalized QR codes that harmoniously blend aesthetics, face identity, and scannability. Our pipeline introduces three innovative components. First, the ID-refined QR integration (IDQR) seamlessly intertwines the background styling with face ID, utilizing a unified Stable Diffusion (SD)-based framework with control networks. Second, the ID-aware QR ReShuffle (IDRS) effectively rectifies the conflicts between face IDs and QR patterns, rearranging QR modules to maintain the integrity of facial features without compromising scannability. Lastly, the ID-preserved Scannability Enhancement (IDSE) markedly boosts scanning robustness through latent code optimization, striking a delicate balance between face ID, aesthetic quality and QR functionality. In comprehensive experiments, Face2QR demonstrates remarkable performance, outperforming existing approaches, particularly in preserving facial recognition features within custom QR code designs. Codes are available at $\href{https://github.com/cavosamir/Face2QR}{\text{this URL link}}$.
Abstract:At present, face 3D reconstruction has broad application prospects in various fields, but the research on it is still in the development stage. In this paper, we hope to achieve better face 3D reconstruction quality by combining multi-view training framework with face parametric model Flame, propose a multi-view training and testing model MFNet (Multi-view Flame Network). We build a self-supervised training framework and implement constraints such as multi-view optical flow loss function and face landmark loss, and finally obtain a complete MFNet. We propose innovative implementations of multi-view optical flow loss and the covisible mask. We test our model on AFLW and facescape datasets and also take pictures of our faces to reconstruct 3D faces while simulating actual scenarios as much as possible, which achieves good results. Our work mainly addresses the problem of combining parametric models of faces with multi-view face 3D reconstruction and explores the implementation of a Flame based multi-view training and testing framework for contributing to the field of face 3D reconstruction.