Abstract:Point cloud registration approaches often fail when the overlap between point clouds is low due to noisy point correspondences. This work introduces a novel cross-attention mechanism tailored for Transformer-based architectures that tackles this problem, by fusing information from coordinates and features at the super-point level between point clouds. This formulation has remained unexplored primarily because it must guarantee rotation and translation invariance since point clouds reside in different and independent reference frames. We integrate the Gromov-Wasserstein distance into the cross-attention formulation to jointly compute distances between points across different point clouds and account for their geometric structure. By doing so, points from two distinct point clouds can attend to each other under arbitrary rigid transformations. At the point level, we also devise a self-attention mechanism that aggregates the local geometric structure information into point features for fine matching. Our formulation boosts the number of inlier correspondences, thereby yielding more precise registration results compared to state-of-the-art approaches. We have conducted an extensive evaluation on 3DMatch, 3DLoMatch, KITTI, and 3DCSR datasets.
Abstract:Recently, test-time adaptation has garnered attention as a method for tuning models without labeled data. The conventional modus operandi for adapting pre-trained vision-language models (VLMs) during test-time primarily focuses on tuning learnable prompts; however, this approach overlooks potential distribution shifts in the visual representations themselves. In this work, we address this limitation by introducing Test-Time Noise Tuning (TNT), a novel method for handling unpredictable shifts in the visual space. TNT leverages, for the first time, a noise adaptation strategy that optimizes learnable noise directly in the visual input space, enabling adaptive feature learning from a single test sample. We further introduce a novel approach for inter-view representation alignment by explicitly enforcing coherence in embedding distances, ensuring consistent feature representations across views. Combined with scaled logits and confident view selection at inference, TNT substantially enhances VLM generalization and calibration, achieving average gains of +7.38% on natural distributions benchmark and +0.80% on cross-dataset evaluations over zero-shot CLIP. These improvements lay a strong foundation for adaptive out-of-distribution handling.
Abstract:In this study, we enhance underwater target detection by integrating channel and spatial attention into YOLOv8's backbone, applying Pointwise Convolution in FasterNeXt for the FasterPW model, and leveraging Weighted Concat in a BiFPN-inspired WFPN structure for improved cross-scale connections and robustness. Utilizing CARAFE for refined feature reassembly, our framework addresses underwater image degradation, achieving mAP at 0.5 scores of 76.7 percent and 79.0 percent on URPC2019 and URPC2020 datasets, respectively. These scores are 2.3 percent and 0.7 percent higher than the original YOLOv8, showcasing enhanced precision in detecting marine organisms.
Abstract:Rotating synthetic aperture (RSA) imaging system captures images of the target scene at different rotation angles by rotating a rectangular aperture. Deblurring acquired RSA images plays a critical role in reconstructing a latent sharp image underlying the scene. In the past decade, the emergence of blind convolution technology has revolutionised this field by its ability to model complex features from acquired images. Most of the existing methods attempt to solve the above ill-posed inverse problem through maximising a posterior. Despite this progress, researchers have paid limited attention to exploring low-dimensional manifold structures of the latent image within a high-dimensional ambient-space. Here, we propose a novel method to process RSA images using manifold fitting and penalisation in the content of multi-frame blind convolution. We develop fast algorithms for implementing the proposed procedure. Simulation studies demonstrate that manifold-based deconvolution can outperform conventional deconvolution algorithms in the sense that it can generate a sharper estimate of the latent image in terms of estimating pixel intensities and preserving structural details.
Abstract:Recent years have witnessed significant advancements in graph machine learning (GML), with its applications spanning numerous domains. However, the focus of GML has predominantly been on developing powerful models, often overlooking a crucial initial step: constructing suitable graphs from common data formats, such as tabular data. This construction process is fundamental to applying graphbased models, yet it remains largely understudied and lacks formalization. Our research aims to address this gap by formalizing the graph construction problem and proposing an effective solution. We identify two critical challenges to achieve this goal: 1. The absence of dedicated datasets to formalize and evaluate the effectiveness of graph construction methods, and 2. Existing automatic construction methods can only be applied to some specific cases, while tedious human engineering is required to generate high-quality graphs. To tackle these challenges, we present a two-fold contribution. First, we introduce a set of datasets to formalize and evaluate graph construction methods. Second, we propose an LLM-based solution, AutoG, automatically generating high-quality graph schemas without human intervention. The experimental results demonstrate that the quality of constructed graphs is critical to downstream task performance, and AutoG can generate high-quality graphs that rival those produced by human experts.
Abstract:In knowledge-intensive tasks, especially in high-stakes domains like medicine and law, it is critical not only to retrieve relevant information but also to provide causal reasoning and explainability. Large language models (LLMs) have achieved remarkable performance in natural language understanding and generation tasks. However, they often suffer from limitations such as difficulty in incorporating new knowledge, generating hallucinations, and explaining their reasoning process. To address these challenges, integrating knowledge graphs with Graph Retrieval-Augmented Generation (Graph RAG) has emerged as an effective solution. Traditional Graph RAG methods often rely on simple graph traversal or semantic similarity, which do not capture causal relationships or align well with the model's internal reasoning steps. This paper proposes a novel pipeline that filters large knowledge graphs to emphasize cause-effect edges, aligns the retrieval process with the model's chain-of-thought (CoT), and enhances reasoning through multi-stage path improvements. Experiments on medical question-answering tasks show consistent gains, with up to a 10\% absolute improvement across multiple large language models (LLMs). This approach demonstrates the value of combining causal reasoning with stepwise retrieval, leading to more interpretable and logically grounded solutions for complex queries.
Abstract:Generating desired images conditioned on given text descriptions has received lots of attention. Recently, diffusion models and autoregressive models have demonstrated their outstanding expressivity and gradually replaced GAN as the favored architectures for text-to-image synthesis. However, they still face some obstacles: slow inference speed and expensive training costs. To achieve more powerful and faster text-to-image synthesis under complex scenes, we propose TIGER, a text-to-image GAN with pretrained representations. To be specific, we propose a vision-empowered discriminator and a high-capacity generator. (i) The vision-empowered discriminator absorbs the complex scene understanding ability and the domain generalization ability from pretrained vision models to enhance model performance. Unlike previous works, we explore stacking multiple pretrained models in our discriminator to collect multiple different representations. (ii) The high-capacity generator aims to achieve effective text-image fusion while increasing the model capacity. The high-capacity generator consists of multiple novel high-capacity fusion blocks (HFBlock). And the HFBlock contains several deep fusion modules and a global fusion module, which play different roles to benefit our model. Extensive experiments demonstrate the outstanding performance of our proposed TIGER both on standard and zero-shot text-to-image synthesis tasks. On the standard text-to-image synthesis task, TIGER achieves state-of-the-art performance on two challenging datasets, which obtain a new FID 5.48 (COCO) and 9.38 (CUB). On the zero-shot text-to-image synthesis task, we achieve comparable performance with fewer model parameters, smaller training data size and faster inference speed. Additionally, more experiments and analyses are conducted in the Supplementary Material.
Abstract:Accurately predicting the trajectory of vehicles is critically important for ensuring safety and reliability in autonomous driving. Although considerable research efforts have been made recently, the inherent trajectory uncertainty caused by various factors including the dynamic driving intends and the diverse driving scenarios still poses significant challenges to accurate trajectory prediction. To address this issue, we propose C2F-TP, a coarse-to-fine denoising framework for uncertainty-aware vehicle trajectory prediction. C2F-TP features an innovative two-stage coarse-to-fine prediction process. Specifically, in the spatial-temporal interaction stage, we propose a spatial-temporal interaction module to capture the inter-vehicle interactions and learn a multimodal trajectory distribution, from which a certain number of noisy trajectories are sampled. Next, in the trajectory refinement stage, we design a conditional denoising model to reduce the uncertainty of the sampled trajectories through a step-wise denoising operation. Extensive experiments are conducted on two real datasets NGSIM and highD that are widely adopted in trajectory prediction. The result demonstrates the effectiveness of our proposal.
Abstract:Teleoperation for robot imitation learning is bottlenecked by hardware availability. Can high-quality robot data be collected without a physical robot? We present a system for augmenting Apple Vision Pro with real-time virtual robot feedback. By providing users with an intuitive understanding of how their actions translate to robot motions, we enable the collection of natural barehanded human data that is compatible with the limitations of physical robot hardware. We conducted a user study with 15 participants demonstrating 3 different tasks each under 3 different feedback conditions and directly replayed the collected trajectories on physical robot hardware. Results suggest live robot feedback dramatically improves the quality of the collected data, suggesting a new avenue for scalable human data collection without access to robot hardware. Videos and more are available at https://nataliya.dev/armada.
Abstract:As virtual reality gains popularity, the demand for controllable creation of immersive and dynamic omnidirectional videos (ODVs) is increasing. While previous text-to-ODV generation methods achieve impressive results, they struggle with content inaccuracies and inconsistencies due to reliance solely on textual inputs. Although recent motion control techniques provide fine-grained control for video generation, directly applying these methods to ODVs often results in spatial distortion and unsatisfactory performance, especially with complex spherical motions. To tackle these challenges, we propose OmniDrag, the first approach enabling both scene- and object-level motion control for accurate, high-quality omnidirectional image-to-video generation. Building on pretrained video diffusion models, we introduce an omnidirectional control module, which is jointly fine-tuned with temporal attention layers to effectively handle complex spherical motion. In addition, we develop a novel spherical motion estimator that accurately extracts motion-control signals and allows users to perform drag-style ODV generation by simply drawing handle and target points. We also present a new dataset, named Move360, addressing the scarcity of ODV data with large scene and object motions. Experiments demonstrate the significant superiority of OmniDrag in achieving holistic scene-level and fine-grained object-level control for ODV generation. The project page is available at https://lwq20020127.github.io/OmniDrag.