Abstract:Domain Generalization (DG) aims to enable models to generalize to unseen target domains by learning from multiple source domains. Existing DG methods primarily rely on convolutional neural networks (CNNs), which inherently learn texture biases due to their limited receptive fields, making them prone to overfitting source domains. While some works have introduced transformer-based methods (ViTs) for DG to leverage the global receptive field, these methods incur high computational costs due to the quadratic complexity of self-attention. Recently, advanced state space models (SSMs), represented by Mamba, have shown promising results in supervised learning tasks by achieving linear complexity in sequence length during training and fast RNN-like computation during inference. Inspired by this, we investigate the generalization ability of the Mamba model under domain shifts and find that input-dependent matrices within SSMs could accumulate and amplify domain-specific features, thus hindering model generalization. To address this issue, we propose a novel SSM-based architecture with saliency-based token-aware transformation (namely START), which achieves state-of-the-art (SOTA) performances and offers a competitive alternative to CNNs and ViTs. Our START can selectively perturb and suppress domain-specific features in salient tokens within the input-dependent matrices of SSMs, thus effectively reducing the discrepancy between different domains. Extensive experiments on five benchmarks demonstrate that START outperforms existing SOTA DG methods with efficient linear complexity. Our code is available at https://github.com/lingeringlight/START.
Abstract:Semi-supervised learning (SSL) techniques address the high labeling costs in 3D medical image segmentation, with the teacher-student model being a common approach. However, using an exponential moving average (EMA) in single-teacher models may cause coupling issues, where the weights of the student and teacher models become similar, limiting the teacher's ability to provide additional knowledge for the student. Dual-teacher models were introduced to address this problem but often neglected the importance of maintaining teacher model diversity, leading to coupling issues among teachers. To address the coupling issue, we incorporate a double-copy-paste (DCP) technique to enhance the diversity among the teachers. Additionally, we introduce the Staged Selective Ensemble (SSE) module, which selects different ensemble methods based on the characteristics of the samples and enables more accurate segmentation of label boundaries, thereby improving the quality of pseudo-labels. Experimental results demonstrate the effectiveness of our proposed method in 3D medical image segmentation tasks. Here is the code link: https://github.com/Fazhan-cs/DCP.
Abstract:In the realm of cross-modal retrieval, seamlessly integrating diverse modalities within multimedia remains a formidable challenge, especially given the complexities introduced by noisy correspondence learning (NCL). Such noise often stems from mismatched data pairs, which is a significant obstacle distinct from traditional noisy labels. This paper introduces Pseudo-Classification based Pseudo-Captioning (PC$^2$) framework to address this challenge. PC$^2$ offers a threefold strategy: firstly, it establishes an auxiliary "pseudo-classification" task that interprets captions as categorical labels, steering the model to learn image-text semantic similarity through a non-contrastive mechanism. Secondly, unlike prevailing margin-based techniques, capitalizing on PC$^2$'s pseudo-classification capability, we generate pseudo-captions to provide more informative and tangible supervision for each mismatched pair. Thirdly, the oscillation of pseudo-classification is borrowed to assistant the correction of correspondence. In addition to technical contributions, we develop a realistic NCL dataset called Noise of Web (NoW), which could be a new powerful NCL benchmark where noise exists naturally. Empirical evaluations of PC$^2$ showcase marked improvements over existing state-of-the-art robust cross-modal retrieval techniques on both simulated and realistic datasets with various NCL settings. The contributed dataset and source code are released at https://github.com/alipay/PC2-NoiseofWeb.
Abstract:Domain generalization (DG) aims to avoid the performance degradation of the model when the distribution shift between the limited training data and unseen test data occurs. Recently, foundation models with enormous parameters have been pre-trained with huge datasets, demonstrating strong generalization ability and showing promising direction for solving the DG problem. However, fully Fine-Tuning (FT) the foundation models results in unsatisfactory out-of-distribution accuracy due to the destroyed pre-trained generalized features. Recently, Parameter-Efficient Fine-Tuning (PEFT) alleviates the above problem by fine-tuning a small portion of the model parameters while keeping the rest frozen, which achieves better generalization performance compared to FT. Nevertheless, PEFT still suffers from the issue of overfitting to the training domains. To address the above issue, we propose Parameter-Efficient Group with Orthogonal regularization (PEGO) for vision transformers, which effectively preserves the generalization ability of the pre-trained network and learns more diverse knowledge compared with conventional PEFT. Specifically, we inject a group of trainable Low-Rank Adaptation (LoRA) modules into the pre-trained model and propose an orthogonal regularization loss to enhance the generalization ability of the model. Our framework achieves SOTA performance on five DG benchmarks, while only requiring training a small number of parameters without adding additional testing cost.
Abstract:Despite the recent success of domain generalization in medical image segmentation, voxel-wise annotation for all source domains remains a huge burden. Semi-supervised domain generalization has been proposed very recently to combat this challenge by leveraging limited labeled data along with abundant unlabeled data collected from multiple medical institutions, depending on precisely harnessing unlabeled data while improving generalization simultaneously. In this work, we observe that domain shifts between medical institutions cause disparate feature statistics, which significantly deteriorates pseudo-label quality due to an unexpected normalization process. Nevertheless, this phenomenon could be exploited to facilitate unseen domain generalization. Therefore, we propose 1) multiple statistics-individual branches to mitigate the impact of domain shifts for reliable pseudo-labels and 2) one statistics-aggregated branch for domain-invariant feature learning. Furthermore, to simulate unseen domains with statistics difference, we approach this from two aspects, i.e., a perturbation with histogram matching at image level and a random batch normalization selection strategy at feature level, producing diverse statistics to expand the training distribution. Evaluation results on three medical image datasets demonstrate the effectiveness of our method compared with recent SOTA methods. The code is available at https://github.com/qiumuyang/SIAB.
Abstract:Both limited annotation and domain shift are prevalent challenges in medical image segmentation. Traditional semi-supervised segmentation and unsupervised domain adaptation methods address one of these issues separately. However, the coexistence of limited annotation and domain shift is quite common, which motivates us to introduce a novel and challenging scenario: Mixed Domain Semi-supervised medical image Segmentation (MiDSS). In this scenario, we handle data from multiple medical centers, with limited annotations available for a single domain and a large amount of unlabeled data from multiple domains. We found that the key to solving the problem lies in how to generate reliable pseudo labels for the unlabeled data in the presence of domain shift with labeled data. To tackle this issue, we employ Unified Copy-Paste (UCP) between images to construct intermediate domains, facilitating the knowledge transfer from the domain of labeled data to the domains of unlabeled data. To fully utilize the information within the intermediate domain, we propose a symmetric Guidance training strategy (SymGD), which additionally offers direct guidance to unlabeled data by merging pseudo labels from intermediate samples. Subsequently, we introduce a Training Process aware Random Amplitude MixUp (TP-RAM) to progressively incorporate style-transition components into intermediate samples. Compared with existing state-of-the-art approaches, our method achieves a notable 13.57% improvement in Dice score on Prostate dataset, as demonstrated on three public datasets. Our code is available at https://github.com/MQinghe/MiDSS .
Abstract:Domain generalization (DG) aims to enhance the model robustness against domain shifts without accessing target domains. A prevalent category of methods for DG is data augmentation, which focuses on generating virtual samples to simulate domain shifts. However, existing augmentation techniques in DG are mainly tailored for convolutional neural networks (CNNs), with limited exploration in token-based architectures, i.e., vision transformer (ViT) and multi-layer perceptrons (MLP) models. In this paper, we study the impact of prior CNN-based augmentation methods on token-based models, revealing their performance is suboptimal due to the lack of incentivizing the model to learn holistic shape information. To tackle the issue, we propose the SEmantic-aware Token Augmentation (SETA) method. SETA transforms token features by perturbing local edge cues while preserving global shape features, thereby enhancing the model learning of shape information. To further enhance the generalization ability of the model, we introduce two stylized variants of our method combined with two state-of-the-art style augmentation methods in DG. We provide a theoretical insight into our method, demonstrating its effectiveness in reducing the generalization risk bound. Comprehensive experiments on five benchmarks prove that our method achieves SOTA performances across various ViT and MLP architectures. Our code is available at https://github.com/lingeringlight/SETA.
Abstract:Segment Anything Model (SAM) fine-tuning has shown remarkable performance in medical image segmentation in a fully supervised manner, but requires precise annotations. To reduce the annotation cost and maintain satisfactory performance, in this work, we leverage the capabilities of SAM for establishing semi-supervised medical image segmentation models. Rethinking the requirements of effectiveness, efficiency, and compatibility, we propose a three-stage framework, i.e., Concatenate, Fine-tuning, and Re-training (CFR). The current fine-tuning approaches mostly involve 2D slice-wise fine-tuning that disregards the contextual information between adjacent slices. Our concatenation strategy mitigates the mismatch between natural and 3D medical images. The concatenated images are then used for fine-tuning SAM, providing robust initialization pseudo-labels. Afterwards, we train a 3D semi-supervised segmentation model while maintaining the same parameter size as the conventional segmenter such as V-Net. Our CFR framework is plug-and-play, and easily compatible with various popular semi-supervised methods. Extensive experiments validate that our CFR achieves significant improvements in both moderate annotation and scarce annotation across four datasets. In particular, CFR framework improves the Dice score of Mean Teacher from 29.68% to 74.40% with only one labeled data of LA dataset.
Abstract:Domain generalization (DG) intends to train a model on multiple source domains to ensure that it can generalize well to an arbitrary unseen target domain. The acquisition of domain-invariant representations is pivotal for DG as they possess the ability to capture the inherent semantic information of the data, mitigate the influence of domain shift, and enhance the generalization capability of the model. Adopting multiple perspectives, such as the sample and the feature, proves to be effective. The sample perspective facilitates data augmentation through data manipulation techniques, whereas the feature perspective enables the extraction of meaningful generalization features. In this paper, we focus on improving the generalization ability of the model by compelling it to acquire domain-invariant representations from both the sample and feature perspectives by disentangling spurious correlations and enhancing potential correlations. 1) From the sample perspective, we develop a frequency restriction module, guiding the model to focus on the relevant correlations between object features and labels, thereby disentangling spurious correlations. 2) From the feature perspective, the simple Tail Interaction module implicitly enhances potential correlations among all samples from all source domains, facilitating the acquisition of domain-invariant representations across multiple domains for the model. The experimental results show that Convolutional Neural Networks (CNNs) or Multi-Layer Perceptrons (MLPs) with a strong baseline embedded with these two modules can achieve superior results, e.g., an average accuracy of 92.30% on Digits-DG.
Abstract:Variational Autoencoder based Bayesian Optimization (VAE-BO) has demonstrated its excellent performance in addressing high-dimensional structured optimization problems. However, current mainstream methods overlook the potential of utilizing a pool of unlabeled data to construct the latent space, while only concentrating on designing sophisticated models to leverage the labeled data. Despite their effective usage of labeled data, these methods often require extra network structures, additional procedure, resulting in computational inefficiency. To address this issue, we propose a novel method to effectively utilize unlabeled data with the guidance of labeled data. Specifically, we tailor the pseudo-labeling technique from semi-supervised learning to explicitly reveal the relative magnitudes of optimization objective values hidden within the unlabeled data. Based on this technique, we assign appropriate training weights to unlabeled data to enhance the construction of a discriminative latent space. Furthermore, we treat the VAE encoder and the Gaussian Process (GP) in Bayesian optimization as a unified deep kernel learning process, allowing the direct utilization of labeled data, which we term as Gaussian Process guidance. This directly and effectively integrates the goal of improving GP accuracy into the VAE training, thereby guiding the construction of the latent space. The extensive experiments demonstrate that our proposed method outperforms existing VAE-BO algorithms in various optimization scenarios. Our code will be published at https://github.com/TaicaiChen/PG-LBO.