Marketing and Commercialization Center, JD.com
Abstract:Semi-supervised learning (SSL) techniques address the high labeling costs in 3D medical image segmentation, with the teacher-student model being a common approach. However, using an exponential moving average (EMA) in single-teacher models may cause coupling issues, where the weights of the student and teacher models become similar, limiting the teacher's ability to provide additional knowledge for the student. Dual-teacher models were introduced to address this problem but often neglected the importance of maintaining teacher model diversity, leading to coupling issues among teachers. To address the coupling issue, we incorporate a double-copy-paste (DCP) technique to enhance the diversity among the teachers. Additionally, we introduce the Staged Selective Ensemble (SSE) module, which selects different ensemble methods based on the characteristics of the samples and enables more accurate segmentation of label boundaries, thereby improving the quality of pseudo-labels. Experimental results demonstrate the effectiveness of our proposed method in 3D medical image segmentation tasks. Here is the code link: https://github.com/Fazhan-cs/DCP.
Abstract:In the realm of high-resolution (HR), fine-grained image segmentation, the primary challenge is balancing broad contextual awareness with the precision required for detailed object delineation, capturing intricate details and the finest edges of objects. Diffusion models, trained on vast datasets comprising billions of image-text pairs, such as SD V2.1, have revolutionized text-to-image synthesis by delivering exceptional quality, fine detail resolution, and strong contextual awareness, making them an attractive solution for high-resolution image segmentation. To this end, we propose DiffDIS, a diffusion-driven segmentation model that taps into the potential of the pre-trained U-Net within diffusion models, specifically designed for high-resolution, fine-grained object segmentation. By leveraging the robust generalization capabilities and rich, versatile image representation prior of the SD models, coupled with a task-specific stable one-step denoising approach, we significantly reduce the inference time while preserving high-fidelity, detailed generation. Additionally, we introduce an auxiliary edge generation task to not only enhance the preservation of fine details of the object boundaries, but reconcile the probabilistic nature of diffusion with the deterministic demands of segmentation. With these refined strategies in place, DiffDIS serves as a rapid object mask generation model, specifically optimized for generating detailed binary maps at high resolutions, while demonstrating impressive accuracy and swift processing. Experiments on the DIS5K dataset demonstrate the superiority of DiffDIS, achieving state-of-the-art results through a streamlined inference process. Our code will be made publicly available.
Abstract:Amidst the swift evolution of social media platforms and e-commerce ecosystems, the domain of opinion mining has surged as a pivotal area of exploration within natural language processing. A specialized segment within this field focuses on extracting nuanced evaluations tied to particular elements within textual contexts. This research advances a composite framework that amalgamates the positional cues of topical descriptors. The proposed system converts syntactic structures into a matrix format, leveraging convolutions and attention mechanisms within a graph to distill salient characteristics. Incorporating the positional relevance of descriptors relative to lexical items enhances the sequential integrity of the input. Trials have substantiated that this integrated graph-centric scheme markedly elevates the efficacy of evaluative categorization, showcasing preeminence.
Abstract:With the rapid development of artificial intelligence technology, especially the increasingly widespread application of question-and-answer systems, high-quality question generation has become a key component in supporting the development of these systems. This article focuses on knowledge-based question generation technology, which aims to enable computers to simulate the human questioning process based on understanding specific texts or knowledge bases. In light of the issues of hallucination and knowledge gaps present in large-scale language models when applied to knowledge-intensive tasks, this paper proposes an enhanced question generation method that incorporates contrastive learning. This method utilizes multiple models to jointly mine domain knowledge and uses contrastive learning to guide the model in reducing noise and hallucinations in generation. Experimental results show that by designing prompts containing contrasting examples, the model's performance in question generation improves considerably, particularly when contrasting instructions and examples are used simultaneously, leading to the highest quality of generated questions and improved accuracy. These results demonstrate that the method proposed in this study, which combines contrasting context and chain-of-thought prompts, can effectively improve both the quality and the practicality of question generation.
Abstract:In the domain of Camouflaged Object Segmentation (COS), despite continuous improvements in segmentation performance, the underlying mechanisms of effective camouflage remain poorly understood, akin to a black box. To address this gap, we present the first comprehensive study to examine the impact of camouflage attributes on the effectiveness of camouflage patterns, offering a quantitative framework for the evaluation of camouflage designs. To support this analysis, we have compiled the first dataset comprising descriptions of camouflaged objects and their attribute contributions, termed COD-Text And X-attributions (COD-TAX). Moreover, drawing inspiration from the hierarchical process by which humans process information: from high-level textual descriptions of overarching scenarios, through mid-level summaries of local areas, to low-level pixel data for detailed analysis. We have developed a robust framework that combines textual and visual information for the task of COS, named Attribution CUe Modeling with Eye-fixation Network (ACUMEN). ACUMEN demonstrates superior performance, outperforming nine leading methods across three widely-used datasets. We conclude by highlighting key insights derived from the attributes identified in our study. Code: https://github.com/lyu-yx/ACUMEN.
Abstract:Recent years have seen substantial progress in diffusion-based controllable video generation. However, achieving precise control in complex scenarios, including fine-grained object parts, sophisticated motion trajectories, and coherent background movement, remains a challenge. In this paper, we introduce TrackGo, a novel approach that leverages free-form masks and arrows for conditional video generation. This method offers users with a flexible and precise mechanism for manipulating video content. We also propose the TrackAdapter for control implementation, an efficient and lightweight adapter designed to be seamlessly integrated into the temporal self-attention layers of a pretrained video generation model. This design leverages our observation that the attention map of these layers can accurately activate regions corresponding to motion in videos. Our experimental results demonstrate that our new approach, enhanced by the TrackAdapter, achieves state-of-the-art performance on key metrics such as FVD, FID, and ObjMC scores. The project page of TrackGo can be found at: https://zhtjtcz.github.io/TrackGo-Page/
Abstract:We introduce the largest abdominal CT dataset (termed AbdomenAtlas) of 20,460 three-dimensional CT volumes sourced from 112 hospitals across diverse populations, geographies, and facilities. AbdomenAtlas provides 673K high-quality masks of anatomical structures in the abdominal region annotated by a team of 10 radiologists with the help of AI algorithms. We start by having expert radiologists manually annotate 22 anatomical structures in 5,246 CT volumes. Following this, a semi-automatic annotation procedure is performed for the remaining CT volumes, where radiologists revise the annotations predicted by AI, and in turn, AI improves its predictions by learning from revised annotations. Such a large-scale, detailed-annotated, and multi-center dataset is needed for two reasons. Firstly, AbdomenAtlas provides important resources for AI development at scale, branded as large pre-trained models, which can alleviate the annotation workload of expert radiologists to transfer to broader clinical applications. Secondly, AbdomenAtlas establishes a large-scale benchmark for evaluating AI algorithms -- the more data we use to test the algorithms, the better we can guarantee reliable performance in complex clinical scenarios. An ISBI & MICCAI challenge named BodyMaps: Towards 3D Atlas of Human Body was launched using a subset of our AbdomenAtlas, aiming to stimulate AI innovation and to benchmark segmentation accuracy, inference efficiency, and domain generalizability. We hope our AbdomenAtlas can set the stage for larger-scale clinical trials and offer exceptional opportunities to practitioners in the medical imaging community. Codes, models, and datasets are available at https://www.zongweiz.com/dataset
Abstract:Despite the recent success of domain generalization in medical image segmentation, voxel-wise annotation for all source domains remains a huge burden. Semi-supervised domain generalization has been proposed very recently to combat this challenge by leveraging limited labeled data along with abundant unlabeled data collected from multiple medical institutions, depending on precisely harnessing unlabeled data while improving generalization simultaneously. In this work, we observe that domain shifts between medical institutions cause disparate feature statistics, which significantly deteriorates pseudo-label quality due to an unexpected normalization process. Nevertheless, this phenomenon could be exploited to facilitate unseen domain generalization. Therefore, we propose 1) multiple statistics-individual branches to mitigate the impact of domain shifts for reliable pseudo-labels and 2) one statistics-aggregated branch for domain-invariant feature learning. Furthermore, to simulate unseen domains with statistics difference, we approach this from two aspects, i.e., a perturbation with histogram matching at image level and a random batch normalization selection strategy at feature level, producing diverse statistics to expand the training distribution. Evaluation results on three medical image datasets demonstrate the effectiveness of our method compared with recent SOTA methods. The code is available at https://github.com/qiumuyang/SIAB.
Abstract:Optimization of convex functions under stochastic zeroth-order feedback has been a major and challenging question in online learning. In this work, we consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries. We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds. We propose an algorithm that features a combination of a bootstrapping stage and a mirror-descent stage. Our main technical innovation consists of a sharp characterization for the spherical-sampling gradient estimator under higher-order smoothness conditions, which allows the algorithm to optimally balance the bias-variance tradeoff, and a new iterative method for the bootstrapping stage, which maintains the performance for unbounded Hessian.
Abstract:We propose a novel method, VectorPainter, for the task of stylized vector graphics synthesis. Given a text prompt and a reference style image, VectorPainter generates a vector graphic that aligns in content with the text prompt and remains faithful in style to the reference image. We recognize that the key to this task lies in fully leveraging the intrinsic properties of vector graphics. Innovatively, we conceptualize the stylization process as the rearrangement of vectorized strokes extracted from the reference image. VectorPainter employs an optimization-based pipeline. It begins by extracting vectorized strokes from the reference image, which are then used to initialize the synthesis process. To ensure fidelity to the reference style, a novel style preservation loss is introduced. Extensive experiments have been conducted to demonstrate that our method is capable of aligning with the text description while remaining faithful to the reference image.