Abstract:This work focuses on full-body co-speech gesture generation. Existing methods typically employ an autoregressive model accompanied by vector-quantized tokens for gesture generation, which results in information loss and compromises the realism of the generated gestures. To address this, inspired by the natural continuity of real-world human motion, we propose MAG, a novel multi-modal aligned framework for high-quality and diverse co-speech gesture synthesis without relying on discrete tokenization. Specifically, (1) we introduce a motion-text-audio-aligned variational autoencoder (MTA-VAE), which leverages pre-trained WavCaps' text and audio embeddings to enhance both semantic and rhythmic alignment with motion, ultimately producing more realistic gestures. (2) Building on this, we propose a multimodal masked autoregressive model (MMAG) that enables autoregressive modeling in continuous motion embeddings through diffusion without vector quantization. To further ensure multi-modal consistency, MMAG incorporates a hybrid granularity audio-text fusion block, which serves as conditioning for diffusion process. Extensive experiments on two benchmark datasets demonstrate that MAG achieves stateof-the-art performance both quantitatively and qualitatively, producing highly realistic and diverse co-speech gestures.The code will be released to facilitate future research.
Abstract:We propose VRSketch2Gaussian, a first VR sketch-guided, multi-modal, native 3D object generation framework that incorporates a 3D Gaussian Splatting representation. As part of our work, we introduce VRSS, the first large-scale paired dataset containing VR sketches, text, images, and 3DGS, bridging the gap in multi-modal VR sketch-based generation. Our approach features the following key innovations: 1) Sketch-CLIP feature alignment. We propose a two-stage alignment strategy that bridges the domain gap between sparse VR sketch embeddings and rich CLIP embeddings, facilitating both VR sketch-based retrieval and generation tasks. 2) Fine-Grained multi-modal conditioning. We disentangle the 3D generation process by using explicit VR sketches for geometric conditioning and text descriptions for appearance control. To facilitate this, we propose a generalizable VR sketch encoder that effectively aligns different modalities. 3) Efficient and high-fidelity 3D native generation. Our method leverages a 3D-native generation approach that enables fast and texture-rich 3D object synthesis. Experiments conducted on our VRSS dataset demonstrate that our method achieves high-quality, multi-modal VR sketch-based 3D generation. We believe our VRSS dataset and VRsketch2Gaussian method will be beneficial for the 3D generation community.