Abstract:Currently, Audio Language Models (ALMs) are rapidly advancing due to the developments in large language models and audio neural codecs. These ALMs have significantly lowered the barrier to creating deepfake audio, generating highly realistic and diverse types of deepfake audio, which pose severe threats to society. Consequently, effective audio deepfake detection technologies to detect ALM-based audio have become increasingly critical. This paper investigate the effectiveness of current countermeasure (CM) against ALM-based audio. Specifically, we collect 12 types of the latest ALM-based deepfake audio and utilizing the latest CMs to evaluate. Our findings reveal that the latest codec-trained CM can effectively detect ALM-based audio, achieving 0% equal error rate under most ALM test conditions, which exceeded our expectations. This indicates promising directions for future research in ALM-based deepfake audio detection.
Abstract:ASVspoof5, the fifth edition of the ASVspoof series, is one of the largest global audio security challenges. It aims to advance the development of countermeasure (CM) to discriminate bonafide and spoofed speech utterances. In this paper, we focus on addressing the problem of open-domain audio deepfake detection, which corresponds directly to the ASVspoof5 Track1 open condition. At first, we comprehensively investigate various CM on ASVspoof5, including data expansion, data augmentation, and self-supervised learning (SSL) features. Due to the high-frequency gaps characteristic of the ASVspoof5 dataset, we introduce Frequency Mask, a data augmentation method that masks specific frequency bands to improve CM robustness. Combining various scale of temporal information with multiple SSL features, our experiments achieved a minDCF of 0.0158 and an EER of 0.55% on the ASVspoof 5 Track 1 evaluation progress set.
Abstract:With the proliferation of deepfake audio, there is an urgent need to investigate their attribution. Current source tracing methods can effectively distinguish in-distribution (ID) categories. However, the rapid evolution of deepfake algorithms poses a critical challenge in the accurate identification of out-of-distribution (OOD) novel deepfake algorithms. In this paper, we propose Real Emphasis and Fake Dispersion (REFD) strategy for audio deepfake algorithm recognition, demonstrating its effectiveness in discriminating ID samples while identifying OOD samples. For effective OOD detection, we first explore current post-hoc OOD methods and propose NSD, a novel OOD approach in identifying novel deepfake algorithms through the similarity consideration of both feature and logits scores. REFD achieves 86.83% F1-score as a single system in Audio Deepfake Detection Challenge 2023 Track3, showcasing its state-of-the-art performance.
Abstract:With the proliferation of Audio Language Model (ALM) based deepfake audio, there is an urgent need for effective detection methods. Unlike traditional deepfake audio generation, which often involves multi-step processes culminating in vocoder usage, ALM directly utilizes neural codec methods to decode discrete codes into audio. Moreover, driven by large-scale data, ALMs exhibit remarkable robustness and versatility, posing a significant challenge to current audio deepfake detection (ADD) models. To effectively detect ALM-based deepfake audio, we focus on the mechanism of the ALM-based audio generation method, the conversion from neural codec to waveform. We initially construct the Codecfake dataset, an open-source large-scale dataset, including two languages, millions of audio samples, and various test conditions, tailored for ALM-based audio detection. Additionally, to achieve universal detection of deepfake audio and tackle domain ascent bias issue of original SAM, we propose the CSAM strategy to learn a domain balanced and generalized minima. Experiment results demonstrate that co-training on Codecfake dataset and vocoded dataset with CSAM strategy yield the lowest average Equal Error Rate (EER) of 0.616% across all test conditions compared to baseline models.
Abstract:Partially spoofed audio detection is a challenging task, lying in the need to accurately locate the authenticity of audio at the frame level. To address this issue, we propose a fine-grained partially spoofed audio detection method, namely Temporal Deepfake Location (TDL), which can effectively capture information of both features and locations. Specifically, our approach involves two novel parts: embedding similarity module and temporal convolution operation. To enhance the identification between the real and fake features, the embedding similarity module is designed to generate an embedding space that can separate the real frames from fake frames. To effectively concentrate on the position information, temporal convolution operation is proposed to calculate the frame-specific similarities among neighboring frames, and dynamically select informative neighbors to convolution. Extensive experiments show that our method outperform baseline models in ASVspoof2019 Partial Spoof dataset and demonstrate superior performance even in the crossdataset scenario. The code is released online.
Abstract:Singing voice synthesis and singing voice conversion have significantly advanced, revolutionizing musical experiences. However, the rise of "Deepfake Songs" generated by these technologies raises concerns about authenticity. Unlike Audio DeepFake Detection (ADD), the field of song deepfake detection lacks specialized datasets or methods for song authenticity verification. In this paper, we initially construct a Chinese Fake Song Detection (FSD) dataset to investigate the field of song deepfake detection. The fake songs in the FSD dataset are generated by five state-of-the-art singing voice synthesis and singing voice conversion methods. Our initial experiments on FSD revealed the ineffectiveness of existing speech-trained ADD models for the task of song deepFake detection. Thus, we employ the FSD dataset for the training of ADD models. We subsequently evaluate these models under two scenarios: one with the original songs and another with separated vocal tracks. Experiment results show that song-trained ADD models exhibit a 38.58% reduction in average equal error rate compared to speech-trained ADD models on the FSD test set.
Abstract:Masked image modeling (MIM) has shown great promise for self-supervised learning (SSL) yet been criticized for learning inefficiency. We believe the insufficient utilization of training signals should be responsible. To alleviate this issue, we introduce a conceptually simple yet learning-efficient MIM training scheme, termed Disjoint Masking with Joint Distillation (DMJD). For disjoint masking (DM), we sequentially sample multiple masked views per image in a mini-batch with the disjoint regulation to raise the usage of tokens for reconstruction in each image while keeping the masking rate of each view. For joint distillation (JD), we adopt a dual branch architecture to respectively predict invisible (masked) and visible (unmasked) tokens with superior learning targets. Rooting in orthogonal perspectives for training efficiency improvement, DM and JD cooperatively accelerate the training convergence yet not sacrificing the model generalization ability. Concretely, DM can train ViT with half of the effective training epochs (3.7 times less time-consuming) to report competitive performance. With JD, our DMJD clearly improves the linear probing classification accuracy over ConvMAE by 5.8%. On fine-grained downstream tasks like semantic segmentation, object detection, etc., our DMJD also presents superior generalization compared with state-of-the-art SSL methods. The code and model will be made public at https://github.com/mx-mark/DMJD.
Abstract:Named entity recognition (NER) of chemicals and drugs is a critical domain of information extraction in biochemical research. NER provides support for text mining in biochemical reactions, including entity relation extraction, attribute extraction, and metabolic response relationship extraction. However, the existence of complex naming characteristics in the biomedical field, such as polysemy and special characters, make the NER task very challenging. Here, we propose a hybrid deep learning approach to improve the recognition accuracy of NER. Specifically, our approach applies the Bidirectional Encoder Representations from Transformers (BERT) model to extract the underlying features of the text, learns a representation of the context of the text through Bi-directional Long Short-Term Memory (BILSTM), and incorporates the multi-head attention (MHATT) mechanism to extract chapter-level features. In this approach, the MHATT mechanism aims to improve the recognition accuracy of abbreviations to efficiently deal with the problem of inconsistency in full-text labels. Moreover, conditional random field (CRF) is used to label sequence tags because this probabilistic method does not need strict independence assumptions and can accommodate arbitrary context information. The experimental evaluation on a publicly-available dataset shows that the proposed hybrid approach achieves the best recognition performance; in particular, it substantially improves performance in recognizing abbreviations, polysemes, and low-frequency entities, compared with the state-of-the-art approaches. For instance, compared with the recognition accuracies for low-frequency entities produced by the BILSTM-CRF algorithm, those produced by the hybrid approach on two entity datasets (MULTIPLE and IDENTIFIER) have been increased by 80% and 21.69%, respectively.