Abstract:The enhanced Deep Hierarchical Video Compression-DHVC 2.0-has been introduced. This single-model neural video codec operates across a broad range of bitrates, delivering not only superior compression performance to representative methods but also impressive complexity efficiency, enabling real-time processing with a significantly smaller memory footprint on standard GPUs. These remarkable advancements stem from the use of hierarchical predictive coding. Each video frame is uniformly transformed into multiscale representations through hierarchical variational autoencoders. For a specific scale's feature representation of a frame, its corresponding latent residual variables are generated by referencing lower-scale spatial features from the same frame and then conditionally entropy-encoded using a probabilistic model whose parameters are predicted using same-scale temporal reference from previous frames and lower-scale spatial reference of the current frame. This feature-space processing operates from the lowest to the highest scale of each frame, completely eliminating the need for the complexity-intensive motion estimation and compensation techniques that have been standard in video codecs for decades. The hierarchical approach facilitates parallel processing, accelerating both encoding and decoding, and supports transmission-friendly progressive decoding, making it particularly advantageous for networked video applications in the presence of packet loss. Source codes will be made available.
Abstract:Image coding for multi-task applications, catering to both human perception and machine vision, has been extensively investigated. Existing methods often rely on multiple task-specific encoder-decoder pairs, leading to high overhead of parameter and bitrate usage, or face challenges in multi-objective optimization under a unified representation, failing to achieve both performance and efficiency. To this end, we propose Multi-Path Aggregation (MPA) integrated into existing coding models for joint human-machine vision, unifying the feature representation with an all-in-one architecture. MPA employs a predictor to allocate latent features among task-specific paths based on feature importance varied across tasks, maximizing the utility of shared features while preserving task-specific features for subsequent refinement. Leveraging feature correlations, we develop a two-stage optimization strategy to alleviate multi-task performance degradation. Upon the reuse of shared features, as low as 1.89% parameters are further augmented and fine-tuned for a specific task, which completely avoids extensive optimization of the entire model. Experimental results show that MPA achieves performance comparable to state-of-the-art methods in both task-specific and multi-objective optimization across human viewing and machine analysis tasks. Moreover, our all-in-one design supports seamless transitions between human- and machine-oriented reconstruction, enabling task-controllable interpretation without altering the unified model. Code is available at https://github.com/NJUVISION/MPA.
Abstract:Despite the unprecedented compression efficiency achieved by deep learned image compression (LIC), existing methods usually approximate the desired bitrate by adjusting a single quality factor for a given input image, which may compromise the rate control results. Considering the Rate-Distortion (R - D) characteristics of different spatial content, this work introduces the block-level rate control based on a novel D - {\lambda} model specific for LIC. Furthermore, we try to exploit the inter-block correlations and propose a block-wise R - D prediction algorithm which greatly speeds up block-level rate control while still guaranteeing high accuracy. Experimental results show that the proposed rate control achieves up to 100 times, speed-up with more than 98% accuracy. Our approach provides an optimal bit allocation for each block and therefore improves the overall compression performance, which offers great potential for block-level LIC.
Abstract:We present a novel approach for synthesizing 3D talking heads with controllable emotion, featuring enhanced lip synchronization and rendering quality. Despite significant progress in the field, prior methods still suffer from multi-view consistency and a lack of emotional expressiveness. To address these issues, we collect EmoTalk3D dataset with calibrated multi-view videos, emotional annotations, and per-frame 3D geometry. By training on the EmoTalk3D dataset, we propose a \textit{`Speech-to-Geometry-to-Appearance'} mapping framework that first predicts faithful 3D geometry sequence from the audio features, then the appearance of a 3D talking head represented by 4D Gaussians is synthesized from the predicted geometry. The appearance is further disentangled into canonical and dynamic Gaussians, learned from multi-view videos, and fused to render free-view talking head animation. Moreover, our model enables controllable emotion in the generated talking heads and can be rendered in wide-range views. Our method exhibits improved rendering quality and stability in lip motion generation while capturing dynamic facial details such as wrinkles and subtle expressions. Experiments demonstrate the effectiveness of our approach in generating high-fidelity and emotion-controllable 3D talking heads. The code and EmoTalk3D dataset are released at https://nju-3dv.github.io/projects/EmoTalk3D.
Abstract:This paper introduces {HINER}, a novel neural representation for compressing HSI and ensuring high-quality downstream tasks on compressed HSI. HINER fully exploits inter-spectral correlations by explicitly encoding of spectral wavelengths and achieves a compact representation of the input HSI sample through joint optimization with a learnable decoder. By additionally incorporating the Content Angle Mapper with the L1 loss, we can supervise the global and local information within each spectral band, thereby enhancing the overall reconstruction quality. For downstream classification on compressed HSI, we theoretically demonstrate the task accuracy is not only related to the classification loss but also to the reconstruction fidelity through a first-order expansion of the accuracy degradation, and accordingly adapt the reconstruction by introducing Adaptive Spectral Weighting. Owing to the monotonic mapping of HINER between wavelengths and spectral bands, we propose Implicit Spectral Interpolation for data augmentation by adding random variables to input wavelengths during classification model training. Experimental results on various HSI datasets demonstrate the superior compression performance of our HINER compared to the existing learned methods and also the traditional codecs. Our model is lightweight and computationally efficient, which maintains high accuracy for downstream classification task even on decoded HSIs at high compression ratios. Our materials will be released at https://github.com/Eric-qi/HINER.
Abstract:Implicit Neural Representation (INR), which utilizes a neural network to map coordinate inputs to corresponding attributes, is causing a revolution in the field of signal processing. However, current INR techniques suffer from the "frequency"-specified spectral bias and capacity-convergence gap, resulting in imperfect performance when representing complex signals with multiple "frequencies". We have identified that both of these two characteristics could be handled by increasing the utilization of definition domain in current activation functions, for which we propose the FINER++ framework by extending existing periodic/non-periodic activation functions to variable-periodic ones. By initializing the bias of the neural network with different ranges, sub-functions with various frequencies in the variable-periodic function are selected for activation. Consequently, the supported frequency set can be flexibly tuned, leading to improved performance in signal representation. We demonstrate the generalization and capabilities of FINER++ with different activation function backbones (Sine, Gauss. and Wavelet) and various tasks (2D image fitting, 3D signed distance field representation, 5D neural radiance fields optimization and streamable INR transmission), and we show that it improves existing INRs. Project page: {https://liuzhen0212.github.io/finerpp/}
Abstract:Implicit Neural Representation (INR) has become a popular method for representing visual signals (e.g., 2D images and 3D scenes), demonstrating promising results in various downstream applications. Given its potential as a medium for visual signals, exploring the development of a neural blending method that utilizes INRs is a natural progression. Neural blending involves merging two INRs to create a new INR that encapsulates information from both original representations. A direct approach involves applying traditional image editing methods to the INR rendering process. However, this method often results in blending distortions, artifacts, and color shifts, primarily due to the discretization of the underlying pixel grid and the introduction of boundary conditions for solving variational problems. To tackle this issue, we introduce the Neural Poisson Solver, a plug-and-play and universally applicable framework across different signal dimensions for blending visual signals represented by INRs. Our Neural Poisson Solver offers a variational problem-solving approach based on the continuous Poisson equation, demonstrating exceptional performance across various domains. Specifically, we propose a gradient-guided neural solver to represent the solution process of the variational problem, refining the target signal to achieve natural blending results. We also develop a Poisson equation-based loss and optimization scheme to train our solver, ensuring it effectively blends the input INR scenes while preserving their inherent structure and semantic content. The lack of dependence on additional prior knowledge makes our method easily adaptable to various task categories, highlighting its versatility. Comprehensive experimental results validate the robustness of our approach across multiple dimensions and blending tasks.
Abstract:The primary focus of Neural Representation for Videos (NeRV) is to effectively model its spatiotemporal consistency. However, current NeRV systems often face a significant issue of spatial inconsistency, leading to decreased perceptual quality. To address this issue, we introduce the Pyramidal Neural Representation for Videos (PNeRV), which is built on a multi-scale information connection and comprises a lightweight rescaling operator, Kronecker Fully-connected layer (KFc), and a Benign Selective Memory (BSM) mechanism. The KFc, inspired by the tensor decomposition of the vanilla Fully-connected layer, facilitates low-cost rescaling and global correlation modeling. BSM merges high-level features with granular ones adaptively. Furthermore, we provide an analysis based on the Universal Approximation Theory of the NeRV system and validate the effectiveness of the proposed PNeRV.We conducted comprehensive experiments to demonstrate that PNeRV surpasses the performance of contemporary NeRV models, achieving the best results in video regression on UVG and DAVIS under various metrics (PSNR, SSIM, LPIPS, and FVD). Compared to vanilla NeRV, PNeRV achieves a +4.49 dB gain in PSNR and a 231% increase in FVD on UVG, along with a +3.28 dB PSNR and 634% FVD increase on DAVIS.
Abstract:The past several years have witnessed the emergence of learned point cloud compression (PCC) techniques. However, current learning-based lossless point cloud attribute compression (PCAC) methods either suffer from high computational complexity or deteriorated compression performance. Moreover, the significant variations in point cloud scale and sparsity encountered in real-world applications make developing an all-in-one neural model a challenging task. In this paper, we propose PoLoPCAC, an efficient and generic lossless PCAC method that achieves high compression efficiency and strong generalizability simultaneously. We formulate lossless PCAC as the task of inferring explicit distributions of attributes from group-wise autoregressive priors. A progressive random grouping strategy is first devised to efficiently resolve the point cloud into groups, and then the attributes of each group are modeled sequentially from accumulated antecedents. A locality-aware attention mechanism is utilized to exploit prior knowledge from context windows in parallel. Since our method directly operates on points, it can naturally avoids distortion caused by voxelization, and can be executed on point clouds with arbitrary scale and density. Experiments show that our method can be instantly deployed once trained on a Synthetic 2k-ShapeNet dataset while enjoying continuous bit-rate reduction over the latest G-PCCv23 on various datasets (ShapeNet, ScanNet, MVUB, 8iVFB). Meanwhile, our method reports shorter coding time than G-PCCv23 on the majority of sequences with a lightweight model size (2.6MB), which is highly attractive for practical applications. Dataset, code and trained model are available at https://github.com/I2-Multimedia-Lab/PoLoPCAC.
Abstract:This paper explores the possibility of extending the capability of pre-trained neural image compressors (e.g., adapting to new data or target bitrates) without breaking backward compatibility, the ability to decode bitstreams encoded by the original model. We refer to this problem as continual learning of image compression. Our initial findings show that baseline solutions, such as end-to-end fine-tuning, do not preserve the desired backward compatibility. To tackle this, we propose a knowledge replay training strategy that effectively addresses this issue. We also design a new model architecture that enables more effective continual learning than existing baselines. Experiments are conducted for two scenarios: data-incremental learning and rate-incremental learning. The main conclusion of this paper is that neural image compressors can be fine-tuned to achieve better performance (compared to their pre-trained version) on new data and rates without compromising backward compatibility. Our code is available at https://gitlab.com/viper-purdue/continual-compression