Abstract:Class-incremental learning (CIL) enables models to learn new classes progressively while preserving knowledge of previously learned ones. Recent advances in this field have shifted towards parameter-efficient fine-tuning techniques, with many approaches building upon the framework that maintains a pool of learnable prompts. Although effective, these methods introduce substantial computational overhead, primarily due to prompt pool querying and increased input sequence lengths from prompt concatenation. In this work, we present a novel prompt-based approach that addresses this limitation. Our method trains a single set of shared prompts across all tasks and, rather than concatenating prompts to the input, directly modifies the CLS token's attention computation by adding the prompts to it. This simple and lightweight design not only significantly reduces computational complexity-both in terms of inference costs and the number of trainable parameters-but also eliminates the need to optimize prompt lengths for different downstream tasks, offering a more efficient yet powerful solution for rehearsal-free class-incremental learning. Extensive experiments across a diverse range of CIL benchmarks demonstrate the effectiveness of our approach, highlighting its potential to establish a new prompt-based CIL paradigm. Furthermore, experiments on general recognition benchmarks beyond the CIL setting also show strong performance, positioning our method as a promising candidate for a general parameter-efficient fine-tuning approach.
Abstract:Anomaly detection (AD) identifies outliers for applications like defect and lesion detection. While CLIP shows promise for zero-shot AD tasks due to its strong generalization capabilities, its inherent Anomaly-Unawareness leads to limited discrimination between normal and abnormal features. To address this problem, we propose Anomaly-Aware CLIP (AA-CLIP), which enhances CLIP's anomaly discrimination ability in both text and visual spaces while preserving its generalization capability. AA-CLIP is achieved through a straightforward yet effective two-stage approach: it first creates anomaly-aware text anchors to differentiate normal and abnormal semantics clearly, then aligns patch-level visual features with these anchors for precise anomaly localization. This two-stage strategy, with the help of residual adapters, gradually adapts CLIP in a controlled manner, achieving effective AD while maintaining CLIP's class knowledge. Extensive experiments validate AA-CLIP as a resource-efficient solution for zero-shot AD tasks, achieving state-of-the-art results in industrial and medical applications. The code is available at https://github.com/Mwxinnn/AA-CLIP.
Abstract:Chemical reaction data is a pivotal asset, driving advances in competitive fields such as pharmaceuticals, materials science, and industrial chemistry. Its proprietary nature renders it sensitive, as it often includes confidential insights and competitive advantages organizations strive to protect. However, in contrast to this need for confidentiality, the current standard training paradigm for machine learning-based retrosynthesis gathers reaction data from multiple sources into one single edge to train prediction models. This paradigm poses considerable privacy risks as it necessitates broad data availability across organizational boundaries and frequent data transmission between entities, potentially exposing proprietary information to unauthorized access or interception during storage and transfer. In the present study, we introduce the chemical knowledge-informed framework (CKIF), a privacy-preserving approach for learning retrosynthesis models. CKIF enables distributed training across multiple chemical organizations without compromising the confidentiality of proprietary reaction data. Instead of gathering raw reaction data, CKIF learns retrosynthesis models through iterative, chemical knowledge-informed aggregation of model parameters. In particular, the chemical properties of predicted reactants are leveraged to quantitatively assess the observable behaviors of individual models, which in turn determines the adaptive weights used for model aggregation. On a variety of reaction datasets, CKIF outperforms several strong baselines by a clear margin (e.g., ~20% performance improvement over FedAvg on USPTO-50K), showing its feasibility and superiority to stimulate further research on privacy-preserving retrosynthesis.
Abstract:The deployment of neural networks in vehicle platforms and wearable Artificial Intelligence-of-Things (AIOT) scenarios has become a research area that has attracted much attention. With the continuous evolution of deep learning technology, many image classification models are committed to improving recognition accuracy, but this is often accompanied by problems such as large model resource usage, complex structure, and high power consumption, which makes it challenging to deploy on resource-constrained platforms. Herein, we propose an ultra-lightweight binary neural network (BNN) model designed for hardware deployment, and conduct image classification research based on the German Traffic Sign Recognition Benchmark (GTSRB) dataset. In addition, we also verify it on the Chinese Traffic Sign (CTS) and Belgian Traffic Sign (BTS) datasets. The proposed model shows excellent recognition performance with an accuracy of up to 97.64%, making it one of the best performing BNN models in the GTSRB dataset. Compared with the full-precision model, the accuracy loss is controlled within 1%, and the parameter storage overhead of the model is only 10% of that of the full-precision model. More importantly, our network model only relies on logical operations and low-bit width fixed-point addition and subtraction operations during the inference phase, which greatly simplifies the design complexity of the processing element (PE). Our research shows the great potential of BNN in the hardware deployment of computer vision models, especially in the field of computer vision tasks related to autonomous driving.
Abstract:This study proposes a novel lightweight neural network model leveraging features extracted from electrocardiogram (ECG) and respiratory signals for early OSA screening. ECG signals are used to generate feature spectrograms to predict sleep stages, while respiratory signals are employed to detect sleep-related breathing abnormalities. By integrating these predictions, the method calculates the apnea-hypopnea index (AHI) with enhanced accuracy, facilitating precise OSA diagnosis. The method was validated on three publicly available sleep apnea databases: the Apnea-ECG database, the UCDDB dataset, and the MIT-BIH Polysomnographic database. Results showed an overall OSA detection accuracy of 0.978, highlighting the model's robustness. Respiratory event classification achieved an accuracy of 0.969 and an area under the receiver operating characteristic curve (ROC-AUC) of 0.98. For sleep stage classification, in UCDDB dataset, the ROC-AUC exceeded 0.85 across all stages, with recall for Sleep reaching 0.906 and specificity for REM and Wake states at 0.956 and 0.937, respectively. This study underscores the potential of integrating lightweight neural networks with multi-signal analysis for accurate, portable, and cost-effective OSA screening, paving the way for broader adoption in home-based and wearable health monitoring systems.
Abstract:To reduce computational overhead while maintaining model performance, model pruning techniques have been proposed. Among these, structured pruning, which removes entire convolutional channels or layers, significantly enhances computational efficiency and is compatible with hardware acceleration. However, existing pruning methods that rely solely on image features or gradients often result in the retention of redundant channels, negatively impacting inference efficiency. To address this issue, this paper introduces a novel pruning method called Feature-Gradient Pruning (FGP). This approach integrates both feature-based and gradient-based information to more effectively evaluate the importance of channels across various target classes, enabling a more accurate identification of channels that are critical to model performance. Experimental results demonstrate that the proposed method improves both model compactness and practicality while maintaining stable performance. Experiments conducted across multiple tasks and datasets show that FGP significantly reduces computational costs and minimizes accuracy loss compared to existing methods, highlighting its effectiveness in optimizing pruning outcomes. The source code is available at: https://github.com/FGP-code/FGP.
Abstract:In recent years, with the significant evolution of multi-modal large models, many recommender researchers realized the potential of multi-modal information for user interest modeling. In industry, a wide-used modeling architecture is a cascading paradigm: (1) first pre-training a multi-modal model to provide omnipotent representations for downstream services; (2) The downstream recommendation model takes the multi-modal representation as additional input to fit real user-item behaviours. Although such paradigm achieves remarkable improvements, however, there still exist two problems that limit model performance: (1) Representation Unmatching: The pre-trained multi-modal model is always supervised by the classic NLP/CV tasks, while the recommendation models are supervised by real user-item interaction. As a result, the two fundamentally different tasks' goals were relatively separate, and there was a lack of consistent objective on their representations; (2) Representation Unlearning: The generated multi-modal representations are always stored in cache store and serve as extra fixed input of recommendation model, thus could not be updated by recommendation model gradient, further unfriendly for downstream training. Inspired by the two difficulties challenges in downstream tasks usage, we introduce a quantitative multi-modal framework to customize the specialized and trainable multi-modal information for different downstream models.
Abstract:Outdoor images often suffer from severe degradation due to rain, haze, and noise, impairing image quality and challenging high-level tasks. Current image restoration methods struggle to handle complex degradation while maintaining efficiency. This paper introduces a novel image restoration architecture that combines multi-dimensional dynamic attention and self-attention within a U-Net framework. To leverage the global modeling capabilities of transformers and the local modeling capabilities of convolutions, we integrate sole CNNs in the encoder-decoder and sole transformers in the latent layer. Additionally, we design convolutional kernels with selected multi-dimensional dynamic attention to capture diverse degraded inputs efficiently. A transformer block with transposed self-attention further enhances global feature extraction while maintaining efficiency. Extensive experiments demonstrate that our method achieves a better balance between performance and computational complexity across five image restoration tasks: deraining, deblurring, denoising, dehazing, and enhancement, as well as superior performance for high-level vision tasks. The source code will be available at https://github.com/House-yuyu/MDDA-former.
Abstract:Ensemble clustering aggregates multiple weak clusterings to achieve a more accurate and robust consensus result. The Co-Association matrix (CA matrix) based method is the mainstream ensemble clustering approach that constructs the similarity relationships between sample pairs according the weak clustering partitions to generate the final clustering result. However, the existing methods neglect that the quality of cluster is related to its size, i.e., a cluster with smaller size tends to higher accuracy. Moreover, they also do not consider the valuable dissimilarity information in the base clusterings which can reflect the varying importance of sample pairs that are completely disconnected. To this end, we propose the Similarity and Dissimilarity Guided Co-association matrix (SDGCA) to achieve ensemble clustering. First, we introduce normalized ensemble entropy to estimate the quality of each cluster, and construct a similarity matrix based on this estimation. Then, we employ the random walk to explore high-order proximity of base clusterings to construct a dissimilarity matrix. Finally, the adversarial relationship between the similarity matrix and the dissimilarity matrix is utilized to construct a promoted CA matrix for ensemble clustering. We compared our method with 13 state-of-the-art methods across 12 datasets, and the results demonstrated the superiority clustering ability and robustness of the proposed approach. The code is available at https://github.com/xuz2019/SDGCA.
Abstract:Deep learning technologies have achieved significant performance improvements in the field of synthetic aperture radar (SAR) image target recognition over traditional methods. However, the inherent "black box" property of deep learning models leads to a lack of transparency in decision-making processes, making them difficult to be convincingly applied in practice. This is especially true in SAR applications, where the credibility and reliability of model predictions are crucial. The complexity and insufficient explainability of deep networks have become a bottleneck for their application. To tackle this issue, this study proposes a physically explainable framework for complex-valued SAR image recognition, designed based on the physical process of microwave propagation. This framework utilizes complex-valued SAR data to explore the amplitude and phase information and its intrinsic physical properties. The network architecture is fully parameterized, with all learnable parameters endowed with clear physical meanings, and the computational process is completed entirely in the frequency domain. Experiments on both the complex-valued MSTAR dataset and a self-built Qilu-1 complex-valued dataset were conducted to validate the effectiveness of framework. In conditions of target overlap, our model discerns categories others find challenging. Against 0dB forest background noise, it boasts a 20% accuracy improvement over traditional neural networks. When targets are 60% masked by noise, it still outperforms other models by 9%. An end-to-end complex-valued synthetic aperture radar automatic target recognition (SAR-ATR) system has also been constructed to perform recognition tasks in interference SAR scenarios. The results demonstrate that the proposed method possesses a strong physical decision logic, high physical explainability and robustness, as well as excellent dealiasing capabilities.