Abstract:The rapid expansion of data from diverse sources has made anomaly detection (AD) increasingly essential for identifying unexpected observations that may signal system failures, security breaches, or fraud. As datasets become more complex and high-dimensional, traditional detection methods struggle to effectively capture intricate patterns. Advances in deep learning have made AD methods more powerful and adaptable, improving their ability to handle high-dimensional and unstructured data. This survey provides a comprehensive review of over 180 recent studies, focusing on deep learning-based AD techniques. We categorize and analyze these methods into reconstruction-based and prediction-based approaches, highlighting their effectiveness in modeling complex data distributions. Additionally, we explore the integration of traditional and deep learning methods, highlighting how hybrid approaches combine the interpretability of traditional techniques with the flexibility of deep learning to enhance detection accuracy and model transparency. Finally, we identify open issues and propose future research directions to advance the field of AD. This review bridges gaps in existing literature and serves as a valuable resource for researchers and practitioners seeking to enhance AD techniques using deep learning.
Abstract:Despite the potential of federated learning in medical applications, inconsistent imaging quality across institutions-stemming from lower-quality data from a minority of clients-biases federated models toward more common high-quality images. This raises significant fairness concerns. Existing fair federated learning methods have demonstrated some effectiveness in solving this problem by aligning a single 0th- or 1st-order state of convergence (e.g., training loss or sharpness). However, we argue in this work that fairness based on such a single state is still not an adequate surrogate for fairness during testing, as these single metrics fail to fully capture the convergence characteristics, making them suboptimal for guiding fair learning. To address this limitation, we develop a generalized framework. Specifically, we propose assessing convergence using multiple states, defined as sharpness or perturbed loss computed at varying search distances. Building on this comprehensive assessment, we propose promoting fairness for these states across clients to achieve our ultimate fairness objective. This is accomplished through the proposed method, FedISM+. In FedISM+, the search distance evolves over time, progressively focusing on different states. We then incorporate two components in local training and global aggregation to ensure cross-client fairness for each state. This gradually makes convergence equitable for all states, thereby improving fairness during testing. Our empirical evaluations, performed on the well-known RSNA ICH and ISIC 2019 datasets, demonstrate the superiority of FedISM+ over existing state-of-the-art methods for fair federated learning. The code is available at https://github.com/wnn2000/FFL4MIA.
Abstract:Class-incremental learning (CIL) enables models to learn new classes progressively while preserving knowledge of previously learned ones. Recent advances in this field have shifted towards parameter-efficient fine-tuning techniques, with many approaches building upon the framework that maintains a pool of learnable prompts. Although effective, these methods introduce substantial computational overhead, primarily due to prompt pool querying and increased input sequence lengths from prompt concatenation. In this work, we present a novel prompt-based approach that addresses this limitation. Our method trains a single set of shared prompts across all tasks and, rather than concatenating prompts to the input, directly modifies the CLS token's attention computation by adding the prompts to it. This simple and lightweight design not only significantly reduces computational complexity-both in terms of inference costs and the number of trainable parameters-but also eliminates the need to optimize prompt lengths for different downstream tasks, offering a more efficient yet powerful solution for rehearsal-free class-incremental learning. Extensive experiments across a diverse range of CIL benchmarks demonstrate the effectiveness of our approach, highlighting its potential to establish a new prompt-based CIL paradigm. Furthermore, experiments on general recognition benchmarks beyond the CIL setting also show strong performance, positioning our method as a promising candidate for a general parameter-efficient fine-tuning approach.
Abstract:Universal Information Extraction (UIE) has garnered significant attention due to its ability to address model explosion problems effectively. Extractive UIE can achieve strong performance using a relatively small model, making it widely adopted. Extractive UIEs generally rely on task instructions for different tasks, including single-target instructions and multiple-target instructions. Single-target instruction UIE enables the extraction of only one type of relation at a time, limiting its ability to model correlations between relations and thus restricting its capability to extract complex relations. While multiple-target instruction UIE allows for the extraction of multiple relations simultaneously, the inclusion of irrelevant relations introduces decision complexity and impacts extraction accuracy. Therefore, for multi-relation extraction, we propose LDNet, which incorporates multi-aspect relation modeling and a label drop mechanism. By assigning different relations to different levels for understanding and decision-making, we reduce decision confusion. Additionally, the label drop mechanism effectively mitigates the impact of irrelevant relations. Experiments show that LDNet outperforms or achieves competitive performance with state-of-the-art systems on 9 tasks, 33 datasets, in both single-modal and multi-modal, few-shot and zero-shot settings.\footnote{https://github.com/Lu-Yang666/LDNet}
Abstract:This paper proposes a novel framework for real-time adaptive-bitrate video streaming by integrating latent diffusion models (LDMs) within the FFmpeg techniques. This solution addresses the challenges of high bandwidth usage, storage inefficiencies, and quality of experience (QoE) degradation associated with traditional constant bitrate streaming (CBS) and adaptive bitrate streaming (ABS). The proposed approach leverages LDMs to compress I-frames into a latent space, offering significant storage and semantic transmission savings without sacrificing high visual quality. While it keeps B-frames and P-frames as adjustment metadata to ensure efficient video reconstruction at the user side, the proposed framework is complemented with the most state-of-the-art denoising and video frame interpolation (VFI) techniques. These techniques mitigate semantic ambiguity and restore temporal coherence between frames, even in noisy wireless communication environments. Experimental results demonstrate the proposed method achieves high-quality video streaming with optimized bandwidth usage, outperforming state-of-the-art solutions in terms of QoE and resource efficiency. This work opens new possibilities for scalable real-time video streaming in 5G and future post-5G networks.
Abstract:Efficient resource allocation is essential for optimizing various tasks in wireless networks, which are usually formulated as generalized assignment problems (GAP). GAP, as a generalized version of the linear sum assignment problem, involves both equality and inequality constraints that add computational challenges. In this work, we present a novel Conditional Value at Risk (CVaR)-based Variational Quantum Eigensolver (VQE) framework to address GAP in vehicular networks (VNets). Our approach leverages a hybrid quantum-classical structure, integrating a tailored cost function that balances both objective and constraint-specific penalties to improve solution quality and stability. Using the CVaR-VQE model, we handle the GAP efficiently by focusing optimization on the lower tail of the solution space, enhancing both convergence and resilience on noisy intermediate-scale quantum (NISQ) devices. We apply this framework to a user-association problem in VNets, where our method achieves 23.5% improvement compared to the deep neural network (DNN) approach.
Abstract:Employing wireless systems with dual sensing and communications functionalities is becoming critical in next generation of wireless networks. In this paper, we propose a robust design for over-the-air federated edge learning (OTA-FEEL) that leverages sensing capabilities at the parameter server (PS) to mitigate the impact of target echoes on the analog model aggregation. We first derive novel expressions for the Cramer-Rao bound of the target response and mean squared error (MSE) of the estimated global model to measure radar sensing and model aggregation quality, respectively. Then, we develop a joint scheduling and beamforming framework that optimizes the OTA-FEEL performance while keeping the sensing and communication quality, determined respectively in terms of Cramer-Rao bound and achievable downlink rate, in a desired range. The resulting scheduling problem reduces to a combinatorial mixed-integer nonlinear programming problem (MINLP). We develop a low-complexity hierarchical method based on the matching pursuit algorithm used widely for sparse recovery in the literature of compressed sensing. The proposed algorithm uses a step-wise strategy to omit the least effective devices in each iteration based on a metric that captures both the aggregation and sensing quality of the system. It further invokes alternating optimization scheme to iteratively update the downlink beamforming and uplink post-processing by marginally optimizing them in each iteration. Convergence and complexity analysis of the proposed algorithm is presented. Numerical evaluations on MNIST and CIFAR-10 datasets demonstrate the effectiveness of our proposed algorithm. The results show that by leveraging accurate sensing, the target echoes on the uplink signal can be effectively suppressed, ensuring the quality of model aggregation to remain intact despite the interference.
Abstract:Current efforts to learn scalable policies in robotic manipulation primarily fall into two categories: one focuses on "action," which involves behavior cloning from extensive collections of robotic data, while the other emphasizes "vision," enhancing model generalization by pre-training representations or generative models, also referred to as world models, using large-scale visual datasets. This paper presents an end-to-end paradigm that predicts actions using inverse dynamics models conditioned on the robot's forecasted visual states, named Predictive Inverse Dynamics Models (PIDM). By closing the loop between vision and action, the end-to-end PIDM can be a better scalable action learner. In practice, we use Transformers to process both visual states and actions, naming the model Seer. It is initially pre-trained on large-scale robotic datasets, such as DROID, and can be adapted to realworld scenarios with a little fine-tuning data. Thanks to large-scale, end-to-end training and the synergy between vision and action, Seer significantly outperforms previous methods across both simulation and real-world experiments. It achieves improvements of 13% on the LIBERO-LONG benchmark, 21% on CALVIN ABC-D, and 43% in real-world tasks. Notably, Seer sets a new state-of-the-art on CALVIN ABC-D benchmark, achieving an average length of 4.28, and exhibits superior generalization for novel objects, lighting conditions, and environments under high-intensity disturbances on real-world scenarios. Code and models are publicly available at https://github.com/OpenRobotLab/Seer/.
Abstract:The aim of multi-label few-shot image classification (ML-FSIC) is to assign semantic labels to images, in settings where only a small number of training examples are available for each label. A key feature of the multi-label setting is that images often have several labels, which typically refer to objects appearing in different regions of the image. When estimating label prototypes, in a metric-based setting, it is thus important to determine which regions are relevant for which labels, but the limited amount of training data and the noisy nature of local features make this highly challenging. As a solution, we propose a strategy in which label prototypes are gradually refined. First, we initialize the prototypes using word embeddings, which allows us to leverage prior knowledge about the meaning of the labels. Second, taking advantage of these initial prototypes, we then use a Loss Change Measurement~(LCM) strategy to select the local features from the training images (i.e.\ the support set) that are most likely to be representative of a given label. Third, we construct the final prototype of the label by aggregating these representative local features using a multi-modal cross-interaction mechanism, which again relies on the initial word embedding-based prototypes. Experiments on COCO, PASCAL VOC, NUS-WIDE, and iMaterialist show that our model substantially improves the current state-of-the-art.
Abstract:This paper addresses the challenge of edge caching in dynamic environments, where rising traffic loads strain backhaul links and core networks. We propose a Proximal Policy Optimization (PPO)-based caching strategy that fully incorporates key file attributes such as size, lifetime, importance, and popularity, while also considering random file request arrivals, reflecting more realistic edge caching scenarios. In dynamic environments, changes such as shifts in content popularity and variations in request rates frequently occur, making previously learned policies less effective as they were optimized for earlier conditions. Without adaptation, caching efficiency and response times can degrade. While learning a new policy from scratch in a new environment is an option, it is highly inefficient and computationally expensive. Thus, adapting an existing policy to these changes is critical. To address this, we develop a mechanism that detects changes in content popularity and request rates, ensuring timely adjustments to the caching strategy. We also propose a transfer learning-based PPO algorithm that accelerates convergence in new environments by leveraging prior knowledge. Simulation results demonstrate the significant effectiveness of our approach, outperforming a recent Deep Reinforcement Learning (DRL)-based method.