Abstract:This paper addresses the challenge of edge caching in dynamic environments, where rising traffic loads strain backhaul links and core networks. We propose a Proximal Policy Optimization (PPO)-based caching strategy that fully incorporates key file attributes such as size, lifetime, importance, and popularity, while also considering random file request arrivals, reflecting more realistic edge caching scenarios. In dynamic environments, changes such as shifts in content popularity and variations in request rates frequently occur, making previously learned policies less effective as they were optimized for earlier conditions. Without adaptation, caching efficiency and response times can degrade. While learning a new policy from scratch in a new environment is an option, it is highly inefficient and computationally expensive. Thus, adapting an existing policy to these changes is critical. To address this, we develop a mechanism that detects changes in content popularity and request rates, ensuring timely adjustments to the caching strategy. We also propose a transfer learning-based PPO algorithm that accelerates convergence in new environments by leveraging prior knowledge. Simulation results demonstrate the significant effectiveness of our approach, outperforming a recent Deep Reinforcement Learning (DRL)-based method.
Abstract:Federated learning (FL) in wireless computing effectively utilizes communication bandwidth, yet it is vulnerable to errors during the analog aggregation process. While removing users with unfavorable channel conditions can mitigate these errors, it also reduces the available local training data for FL, which in turn hinders the convergence rate of the training process. To tackle this issue, we propose the use of movable antenna (MA) techniques to enhance the degrees of freedom within the channel space, ultimately boosting the convergence speed of FL training. Moreover, we develop a coordinated approach for uplink receiver beamforming, user selection, and MA positioning to optimize the convergence rate of wireless FL training in dynamic wireless environments. This stochastic optimization challenge is reformulated into a mixed-integer programming problem by utilizing the training loss upper bound. We then introduce a penalty dual decomposition (PDD) method to solve the mixed-integer mixed programming problem. Experimental results indicate that incorporating MA techniques significantly accelerates the training convergence of FL and greatly surpasses conventional methods.
Abstract:Mixture-of-Experts (MOE) has recently become the de facto standard in Multi-domain recommendation (MDR) due to its powerful expressive ability. However, such MOE-based method typically employs all experts for each instance, leading to scalability issue and low-discriminability between domains and experts. Furthermore, the design of commonly used domain-specific networks exacerbates the scalability issues. To tackle the problems, We propose a novel method named CESAA consists of Conditional Expert Selection (CES) Module and Adaptive Expert Aggregation (AEA) Module to tackle these challenges. Specifically, CES first combines a sparse gating strategy with domain-shared experts. Then AEA utilizes mutual information loss to strengthen the correlations between experts and specific domains, and significantly improve the distinction between experts. As a result, only domain-shared experts and selected domain-specific experts are activated for each instance, striking a balance between computational efficiency and model performance. Experimental results on both public ranking and industrial retrieval datasets verify the effectiveness of our method in MDR tasks.
Abstract:Glitch tokens in Large Language Models (LLMs) can trigger unpredictable behaviors, compromising model reliability and safety. Existing detection methods often rely on manual observation to infer the prior distribution of glitch tokens, which is inefficient and lacks adaptability across diverse model architectures. To address these limitations, we introduce GlitchMiner, a gradient-based discrete optimization framework designed for efficient glitch token detection in LLMs. GlitchMiner leverages an entropy-based loss function to quantify the uncertainty in model predictions and integrates first-order Taylor approximation with a local search strategy to effectively explore the token space. Our evaluation across various mainstream LLM architectures demonstrates that GlitchMiner surpasses existing methods in both detection precision and adaptability. In comparison to the previous state-of-the-art, GlitchMiner achieves an average improvement of 19.07% in precision@1000 for glitch token detection. By enabling efficient detection of glitch tokens, GlitchMiner provides a valuable tool for assessing and mitigating potential vulnerabilities in LLMs, contributing to their overall security.
Abstract:The image-based multimodal automatic speech recognition (ASR) model enhances speech recognition performance by incorporating audio-related image. However, some works suggest that introducing image information to model does not help improving ASR performance. In this paper, we propose a novel approach effectively utilizing audio-related image information and set up VHASR, a multimodal speech recognition system that uses vision as hotwords to strengthen the model's speech recognition capability. Our system utilizes a dual-stream architecture, which firstly transcribes the text on the two streams separately, and then combines the outputs. We evaluate the proposed model on four datasets: Flickr8k, ADE20k, COCO, and OpenImages. The experimental results show that VHASR can effectively utilize key information in images to enhance the model's speech recognition ability. Its performance not only surpasses unimodal ASR, but also achieves SOTA among existing image-based multimodal ASR.
Abstract:Chinese Spelling Correction (CSC) stands as a foundational Natural Language Processing (NLP) task, which primarily focuses on the correction of erroneous characters in Chinese texts. Certain existing methodologies opt to disentangle the error correction process, employing an additional error detector to pinpoint error positions. However, owing to the inherent performance limitations of error detector, precision and recall are like two sides of the coin which can not be both facing up simultaneously. Furthermore, it is also worth investigating how the error position information can be judiciously applied to assist the error correction. In this paper, we introduce a novel approach based on error detector-corrector framework. Our detector is designed to yield two error detection results, each characterized by high precision and recall. Given that the occurrence of errors is context-dependent and detection outcomes may be less precise, we incorporate the error detection results into the CSC task using an innovative feature fusion strategy and a selective masking strategy. Empirical experiments conducted on mainstream CSC datasets substantiate the efficacy of our proposed method.
Abstract:As the recommendation service needs to address increasingly diverse distributions, such as multi-population, multi-scenario, multitarget, and multi-interest, more and more recent works have focused on multi-distribution modeling and achieved great progress. However, most of them only consider modeling in a single multi-distribution manner, ignoring that mixed multi-distributions often coexist and form hierarchical relationships. To address these challenges, we propose a flexible modeling paradigm, named Hierarchical Multi-Distribution Network (HMDN), which efficiently models these hierarchical relationships and can seamlessly integrate with existing multi-distribution methods, such as Mixture of-Experts (MoE) and Dynamic-Weight (DW) models. Specifically, we first design a hierarchical multi-distribution representation refinement module, employing a multi-level residual quantization to obtain fine-grained hierarchical representation. Then, the refined hierarchical representation is integrated into the existing single multi-distribution models, seamlessly expanding them into mixed multi-distribution models. Experimental results on both public and industrial datasets validate the effectiveness and flexibility of HMDN.
Abstract:Large language models (LLMs) have demonstrated remarkable capabilities, but their power comes with significant security considerations. While extensive research has been conducted on the safety of LLMs in chat mode, the security implications of their function calling feature have been largely overlooked. This paper uncovers a critical vulnerability in the function calling process of LLMs, introducing a novel "jailbreak function" attack method that exploits alignment discrepancies, user coercion, and the absence of rigorous safety filters. Our empirical study, conducted on six state-of-the-art LLMs including GPT-4o, Claude-3.5-Sonnet, and Gemini-1.5-pro, reveals an alarming average success rate of over 90\% for this attack. We provide a comprehensive analysis of why function calls are susceptible to such attacks and propose defensive strategies, including the use of defensive prompts. Our findings highlight the urgent need for enhanced security measures in the function calling capabilities of LLMs, contributing to the field of AI safety by identifying a previously unexplored risk, designing an effective attack method, and suggesting practical defensive measures. Our code is available at https://github.com/wooozihui/jailbreakfunction.
Abstract:This paper proposes a weight-aware deep reinforcement learning (WADRL) approach designed to address the multiobjective vehicle routing problem with time windows (MOVRPTW), aiming to use a single deep reinforcement learning (DRL) model to solve the entire multiobjective optimization problem. The Non-dominated sorting genetic algorithm-II (NSGA-II) method is then employed to optimize the outcomes produced by the WADRL, thereby mitigating the limitations of both approaches. Firstly, we design an MOVRPTW model to balance the minimization of travel cost and the maximization of customer satisfaction. Subsequently, we present a novel DRL framework that incorporates a transformer-based policy network. This network is composed of an encoder module, a weight embedding module where the weights of the objective functions are incorporated, and a decoder module. NSGA-II is then utilized to optimize the solutions generated by WADRL. Finally, extensive experimental results demonstrate that our method outperforms the existing and traditional methods. Due to the numerous constraints in VRPTW, generating initial solutions of the NSGA-II algorithm can be time-consuming. However, using solutions generated by the WADRL as initial solutions for NSGA-II significantly reduces the time required for generating initial solutions. Meanwhile, the NSGA-II algorithm can enhance the quality of solutions generated by WADRL, resulting in solutions with better scalability. Notably, the weight-aware strategy significantly reduces the training time of DRL while achieving better results, enabling a single DRL model to solve the entire multiobjective optimization problem.
Abstract:Transformers have achieved the state-of-the-art performance on solving the inverse problem of Snapshot Compressive Imaging (SCI) for video, whose ill-posedness is rooted in the mixed degradation of spatial masking and temporal aliasing. However, previous Transformers lack an insight into the degradation and thus have limited performance and efficiency. In this work, we tailor an efficient reconstruction architecture without temporal aggregation in early layers and Hierarchical Separable Video Transformer (HiSViT) as building block. HiSViT is built by multiple groups of Cross-Scale Separable Multi-head Self-Attention (CSS-MSA) and Gated Self-Modulated Feed-Forward Network (GSM-FFN) with dense connections, each of which is conducted within a separate channel portions at a different scale, for multi-scale interactions and long-range modeling. By separating spatial operations from temporal ones, CSS-MSA introduces an inductive bias of paying more attention within frames instead of between frames while saving computational overheads. GSM-FFN is design to enhance the locality via gated mechanism and factorized spatial-temporal convolutions. Extensive experiments demonstrate that our method outperforms previous methods by $>\!0.5$ dB with comparable or fewer complexity and parameters. The source codes and pretrained models are released at https://github.com/pwangcs/HiSViT.