Abstract:Transformer has been extensively explored for hyperspectral image (HSI) classification. However, transformer poses challenges in terms of speed and memory usage because of its quadratic computational complexity. Recently, the Mamba model has emerged as a promising approach, which has strong long-distance modeling capabilities while maintaining a linear computational complexity. However, representing the HSI is challenging for the Mamba due to the requirement for an integrated spatial and spectral understanding. To remedy these drawbacks, we propose a novel HSI classification model based on a Mamba model, named MambaHSI, which can simultaneously model long-range interaction of the whole image and integrate spatial and spectral information in an adaptive manner. Specifically, we design a spatial Mamba block (SpaMB) to model the long-range interaction of the whole image at the pixel-level. Then, we propose a spectral Mamba block (SpeMB) to split the spectral vector into multiple groups, mine the relations across different spectral groups, and extract spectral features. Finally, we propose a spatial-spectral fusion module (SSFM) to adaptively integrate spatial and spectral features of a HSI. To our best knowledge, this is the first image-level HSI classification model based on the Mamba. We conduct extensive experiments on four diverse HSI datasets. The results demonstrate the effectiveness and superiority of the proposed model for HSI classification. This reveals the great potential of Mamba to be the next-generation backbone for HSI models. Codes are available at https://github.com/li-yapeng/MambaHSI .
Abstract:Large Language Models (LLMs) have revolutionized text generation, making detecting machine-generated text increasingly challenging. Although past methods have achieved good performance on detecting pure machine-generated text, those detectors have poor performance on distinguishing machine-revised text (rewriting, expansion, and polishing), which can have only minor changes from its original human prompt. As the content of text may originate from human prompts, detecting machine-revised text often involves identifying distinctive machine styles, e.g., worded favored by LLMs. However, existing methods struggle to detect machine-style phrasing hidden within the content contributed by humans. We propose the "Imitate Before Detect" (ImBD) approach, which first imitates the machine-style token distribution, and then compares the distribution of the text to be tested with the machine-style distribution to determine whether the text has been machine-revised. To this end, we introduce style preference optimization (SPO), which aligns a scoring LLM model to the preference of text styles generated by machines. The aligned scoring model is then used to calculate the style-conditional probability curvature (Style-CPC), quantifying the log probability difference between the original and conditionally sampled texts for effective detection. We conduct extensive comparisons across various scenarios, encompassing text revisions by six LLMs, four distinct text domains, and three machine revision types. Compared to existing state-of-the-art methods, our method yields a 13% increase in AUC for detecting text revised by open-source LLMs, and improves performance by 5% and 19% for detecting GPT-3.5 and GPT-4o revised text, respectively. Notably, our method surpasses the commercially trained GPT-Zero with just $1,000$ samples and five minutes of SPO, demonstrating its efficiency and effectiveness.
Abstract:Multi-task learning (MTL) leverages a shared model to accomplish multiple tasks and facilitate knowledge transfer. Recent research on task arithmetic-based MTL demonstrates that merging the parameters of independently fine-tuned models can effectively achieve MTL. However, existing merging methods primarily seek a static optimal solution within the original model parameter space, which often results in performance degradation due to the inherent diversity among tasks and potential interferences. To address this challenge, in this paper, we propose a Weight-Ensembling Mixture of Experts (WEMoE) method for multi-task model merging. Specifically, we first identify critical (or sensitive) modules by analyzing parameter variations in core modules of Transformer-based models before and after finetuning. Then, our WEMoE statically merges non-critical modules while transforming critical modules into a mixture-of-experts (MoE) structure. During inference, expert modules in the MoE are dynamically merged based on input samples, enabling a more flexible and adaptive merging approach. Building on WEMoE, we further introduce an efficient-and-effective WEMoE (E-WEMoE) method, whose core mechanism involves eliminating non-essential elements in the critical modules of WEMoE and implementing shared routing across multiple MoE modules, thereby significantly reducing both the trainable parameters, the overall parameter count, and computational overhead of the merged model by WEMoE. Experimental results across various architectures and tasks demonstrate that both WEMoE and E-WEMoE outperform state-of-the-art (SOTA) model merging methods in terms of MTL performance, generalization, and robustness.
Abstract:Transformer has achieved satisfactory results in the field of hyperspectral image (HSI) classification. However, existing Transformer models face two key challenges when dealing with HSI scenes characterized by diverse land cover types and rich spectral information: (1) fixed receptive field representation overlooks effective contextual information; (2) redundant self-attention feature representation. To address these limitations, we propose a novel Selective Transformer (SFormer) for HSI classification. The SFormer is designed to dynamically select receptive fields for capturing both spatial and spectral contextual information, while mitigating the impact of redundant data by prioritizing the most relevant features. This enables a highly accurate classification of the land covers of the HSI. Specifically, a Kernel Selective Transformer Block (KSTB) is first utilized to dynamically select an appropriate receptive field range to effectively extract spatial-spectral features. Furthermore, to capture the most crucial tokens, a Token Selective Transformer Block (TSTB) is introduced, which selects the most relevant tokens based on the ranking of attention scores for each query. Extensive experiments on four benchmark HSI datasets demonstrate that the proposed SFormer outperforms the state-of-the-art HSI classification models. The codes will be released.
Abstract:The image-based multimodal automatic speech recognition (ASR) model enhances speech recognition performance by incorporating audio-related image. However, some works suggest that introducing image information to model does not help improving ASR performance. In this paper, we propose a novel approach effectively utilizing audio-related image information and set up VHASR, a multimodal speech recognition system that uses vision as hotwords to strengthen the model's speech recognition capability. Our system utilizes a dual-stream architecture, which firstly transcribes the text on the two streams separately, and then combines the outputs. We evaluate the proposed model on four datasets: Flickr8k, ADE20k, COCO, and OpenImages. The experimental results show that VHASR can effectively utilize key information in images to enhance the model's speech recognition ability. Its performance not only surpasses unimodal ASR, but also achieves SOTA among existing image-based multimodal ASR.
Abstract:Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities. In-Context Learning (ICL) and Parameter-Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting LLMs to downstream tasks. ICL typically constructs a few-shot learning scenario, either manually or by setting up a Retrieval-Augmented Generation (RAG) system, helping models quickly grasp domain knowledge or question-answering patterns without changing model parameters. However, this approach involves trade-offs, such as slower inference speed and increased space occupancy. PEFT assists the model in adapting to tasks through minimal parameter modifications, but the training process still demands high hardware requirements, even with a small number of parameters involved. To address these challenges, we propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning, maintaining low inference costs. RTD constructs a reference datastore from the provided training examples and optimizes the LLM's final vocabulary distribution by flexibly selecting suitable references based on the input, resulting in more trustable responses and enabling the model to adapt to downstream tasks at a low cost. Experimental evaluations on various LLMs using different benchmarks demonstrate that RTD establishes a new paradigm for augmenting models to downstream tasks. Furthermore, our method exhibits strong orthogonality with traditional methods, allowing for concurrent usage.
Abstract:Chinese Spelling Correction (CSC) stands as a foundational Natural Language Processing (NLP) task, which primarily focuses on the correction of erroneous characters in Chinese texts. Certain existing methodologies opt to disentangle the error correction process, employing an additional error detector to pinpoint error positions. However, owing to the inherent performance limitations of error detector, precision and recall are like two sides of the coin which can not be both facing up simultaneously. Furthermore, it is also worth investigating how the error position information can be judiciously applied to assist the error correction. In this paper, we introduce a novel approach based on error detector-corrector framework. Our detector is designed to yield two error detection results, each characterized by high precision and recall. Given that the occurrence of errors is context-dependent and detection outcomes may be less precise, we incorporate the error detection results into the CSC task using an innovative feature fusion strategy and a selective masking strategy. Empirical experiments conducted on mainstream CSC datasets substantiate the efficacy of our proposed method.
Abstract:The limitations of task-specific and general image restoration methods for specific degradation have prompted the development of all-in-one image restoration techniques. However, the diversity of patterns among multiple degradation, along with the significant uncertainties in mapping between degraded images of different severities and their corresponding undistorted versions, pose significant challenges to the all-in-one restoration tasks. To address these challenges, we propose Perceive-IR, an all-in-one image restorer designed to achieve fine-grained quality control that enables restored images to more closely resemble their undistorted counterparts, regardless of the type or severity of degradation. Specifically, Perceive-IR contains two stages: (1) prompt learning stage and (2) restoration stage. In the prompt learning stage, we leverage prompt learning to acquire a fine-grained quality perceiver capable of distinguishing three-tier quality levels by constraining the prompt-image similarity in the CLIP perception space. Subsequently, this quality perceiver and difficulty-adaptive perceptual loss are integrated as a quality-aware learning strategy to realize fine-grained quality control in restoration stage. For the restoration stage, a semantic guidance module (SGM) and compact feature extraction (CFE) are proposed to further promote the restoration process by utilizing the robust semantic information from the pre-trained large scale vision models and distinguishing degradation-specific features. Extensive experiments demonstrate that our Perceive-IR outperforms state-of-the-art methods in all-in-one image restoration tasks and exhibit superior generalization ability when dealing with unseen tasks.
Abstract:Deep model training on extensive datasets is increasingly becoming cost-prohibitive, prompting the widespread adoption of deep model fusion techniques to leverage knowledge from pre-existing models. From simple weight averaging to more sophisticated methods like AdaMerging, model fusion effectively improves model performance and accelerates the development of new models. However, potential interference between parameters of individual models and the lack of interpretability in the fusion progress remain significant challenges. Existing methods often try to resolve the parameter interference issue by evaluating attributes of parameters, such as their magnitude or sign, or by parameter pruning. In this study, we begin by examining the fine-tuning of linear layers through the lens of subspace analysis and explicitly define parameter interference as an optimization problem to shed light on this subject. Subsequently, we introduce an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction, which allows for the upscaling of source models into an MoE model without extra data or further training. Our approach relies on the observation that fine-tuning mostly keeps the important parts from the pre-training, but it uses less significant or unused areas to adapt to new tasks. Also, the issue of parameter interference, which is intrinsically intractable in the original parameter space, can be managed by expanding the dimensions. We conduct extensive experiments across diverse scenarios, such as image classification and text generalization tasks, using full fine-tuning and LoRA fine-tuning, and we apply our method to large language models (CLIP models, Flan-T5 models, and Mistral-7B models), highlighting the adaptability and scalability of SMILE. Code is available at https://github.com/tanganke/fusion_bench
Abstract:Transformer, a deep neural network architecture, has long dominated the field of natural language processing and beyond. Nevertheless, the recent introduction of Mamba challenges its supremacy, sparks considerable interest among researchers, and gives rise to a series of Mamba-based models that have exhibited notable potential. This survey paper orchestrates a comprehensive discussion, diving into essential research dimensions, covering: (i) the functioning of the Mamba mechanism and its foundation on the principles of structured state space models; (ii) the proposed improvements and the integration of Mamba with various networks, exploring its potential as a substitute for Transformers; (iii) the combination of Transformers and Mamba to compensate for each other's shortcomings. We have also made efforts to interpret Mamba and Transformer in the framework of kernel functions, allowing for a comparison of their mathematical nature within a unified context. Our paper encompasses the vast majority of improvements related to Mamba to date.