Sid
Abstract:Real-world image super-resolution (Real-ISR) aims to reconstruct high-resolution images from low-resolution inputs degraded by complex, unknown processes. While many Stable Diffusion (SD)-based Real-ISR methods have achieved remarkable success, their slow, multi-step inference hinders practical deployment. Recent SD-based one-step networks like OSEDiff and S3Diff alleviate this issue but still incur high computational costs due to their reliance on large pretrained SD models. This paper proposes a novel Real-ISR method, AdcSR, by distilling the one-step diffusion network OSEDiff into a streamlined diffusion-GAN model under our Adversarial Diffusion Compression (ADC) framework. We meticulously examine the modules of OSEDiff, categorizing them into two types: (1) Removable (VAE encoder, prompt extractor, text encoder, etc.) and (2) Prunable (denoising UNet and VAE decoder). Since direct removal and pruning can degrade the model's generation capability, we pretrain our pruned VAE decoder to restore its ability to decode images and employ adversarial distillation to compensate for performance loss. This ADC-based diffusion-GAN hybrid design effectively reduces complexity by 73% in inference time, 78% in computation, and 74% in parameters, while preserving the model's generation capability. Experiments manifest that our proposed AdcSR achieves competitive recovery quality on both synthetic and real-world datasets, offering up to 9.3$\times$ speedup over previous one-step diffusion-based methods. Code and models will be made available.
Abstract:Integrated sensing and communication (ISAC) unifies wireless communication and sensing by sharing spectrum and hardware, which often incurs trade-offs between two functions due to limited resources. However, this paper shifts focus to exploring the synergy between communication and sensing, using WiFi sensing as an exemplary scenario where communication signals are repurposed to probe the environment without dedicated sensing waveforms, followed by data uploading to the edge server for inference. While increased device participation enhances multi-view sensing data, it also imposes significant communication overhead between devices and the edge server. To address this challenge, we aim to maximize the sensing task performance, measured by mutual information, under the channel capacity constraint. The information-theoretic optimization problem is solved by the proposed ADE-MI, a novel framework that employs a two-stage optimization two-stage optimization approach: (1) adaptive distributed encoding (ADE) at the device, which ensures transmitted bits are most relevant to sensing tasks, and (2) multi-view Inference (MI) at the edge server, which orchestrates multi-view data from distributed devices. Our experimental results highlight the synergy between communication and sensing, showing that more frequent communication from WiFi access points to edge devices improves sensing inference accuracy. The proposed ADE-MI achieves 92\% recognition accuracy with over $10^4$-fold reduction in latency compared to schemes with raw data communication, achieving both high sensing inference accuracy and low communication latency simultaneously.
Abstract:Human behavioral patterns and consumption paradigms have emerged as pivotal determinants in environmental degradation and climate change, with quotidian decisions pertaining to transportation, energy utilization, and resource consumption collectively precipitating substantial ecological impacts. Recommender systems, which generate personalized suggestions based on user preferences and historical interaction data, exert considerable influence on individual behavioral trajectories. However, conventional recommender systems predominantly optimize for user engagement and economic metrics, inadvertently neglecting the environmental and societal ramifications of their recommendations, potentially catalyzing over-consumption and reinforcing unsustainable behavioral patterns. Given their instrumental role in shaping user decisions, there exists an imperative need for sustainable recommender systems that incorporate sustainability principles to foster eco-conscious and socially responsible choices. This comprehensive survey addresses this critical research gap by presenting a systematic analysis of sustainable recommender systems. As these systems can simultaneously advance multiple sustainability objectives--including resource conservation, sustainable consumer behavior, and social impact enhancement--examining their implementations across distinct application domains provides a more rigorous analytical framework. Through a methodological analysis of domain-specific implementations encompassing transportation, food, buildings, and auxiliary sectors, we can better elucidate how these systems holistically advance sustainability objectives while addressing sector-specific constraints and opportunities. Moreover, we delineate future research directions for evolving recommender systems beyond sustainability advocacy toward fostering environmental resilience and social consciousness in society.
Abstract:Large-scale distributed model training requires simultaneous training on up to thousands of machines. Faulty machine detection is critical when an unexpected fault occurs in a machine. From our experience, a training task can encounter two faults per day on average, possibly leading to a halt for hours. To address the drawbacks of the time-consuming and labor-intensive manual scrutiny, we propose Minder, an automatic faulty machine detector for distributed training tasks. The key idea of Minder is to automatically and efficiently detect faulty distinctive monitoring metric patterns, which could last for a period before the entire training task comes to a halt. Minder has been deployed in our production environment for over one year, monitoring daily distributed training tasks where each involves up to thousands of machines. In our real-world fault detection scenarios, Minder can accurately and efficiently react to faults within 3.6 seconds on average, with a precision of 0.904 and F1-score of 0.893.
Abstract:Meta-learning offers a promising avenue for few-shot learning (FSL), enabling models to glean a generalizable feature embedding through episodic training on synthetic FSL tasks in a source domain. Yet, in practical scenarios where the target task diverges from that in the source domain, meta-learning based method is susceptible to over-fitting. To overcome this, we introduce a novel framework, Meta-Exploiting Frequency Prior for Cross-Domain Few-Shot Learning, which is crafted to comprehensively exploit the cross-domain transferable image prior that each image can be decomposed into complementary low-frequency content details and high-frequency robust structural characteristics. Motivated by this insight, we propose to decompose each query image into its high-frequency and low-frequency components, and parallel incorporate them into the feature embedding network to enhance the final category prediction. More importantly, we introduce a feature reconstruction prior and a prediction consistency prior to separately encourage the consistency of the intermediate feature as well as the final category prediction between the original query image and its decomposed frequency components. This allows for collectively guiding the network's meta-learning process with the aim of learning generalizable image feature embeddings, while not introducing any extra computational cost in the inference phase. Our framework establishes new state-of-the-art results on multiple cross-domain few-shot learning benchmarks.
Abstract:Medical video generation models are expected to have a profound impact on the healthcare industry, including but not limited to medical education and training, surgical planning, and simulation. Current video diffusion models typically build on image diffusion architecture by incorporating temporal operations (such as 3D convolution and temporal attention). Although this approach is effective, its oversimplification limits spatio-temporal performance and consumes substantial computational resources. To counter this, we propose Medical Simulation Video Generator (MedSora), which incorporates three key elements: i) a video diffusion framework integrates the advantages of attention and Mamba, balancing low computational load with high-quality video generation, ii) an optical flow representation alignment method that implicitly enhances attention to inter-frame pixels, and iii) a video variational autoencoder (VAE) with frequency compensation addresses the information loss of medical features that occurs when transforming pixel space into latent features and then back to pixel frames. Extensive experiments and applications demonstrate that MedSora exhibits superior visual quality in generating medical videos, outperforming the most advanced baseline methods. Further results and code are available at https://wongzbb.github.io/MedSora
Abstract:Flaky tests, which pass or fail inconsistently without code changes, are a major challenge in software engineering in general and in quantum software engineering in particular due to their complexity and probabilistic nature, leading to hidden issues and wasted developer effort. We aim to create an automated framework to detect flaky tests in quantum software and an extended dataset of quantum flaky tests, overcoming the limitations of manual methods. Building on prior manual analysis of 14 quantum software repositories, we expanded the dataset and automated flaky test detection using transformers and cosine similarity. We conducted experiments with Large Language Models (LLMs) from the OpenAI GPT and Meta LLaMA families to assess their ability to detect and classify flaky tests from code and issue descriptions. Embedding transformers proved effective: we identified 25 new flaky tests, expanding the dataset by 54%. Top LLMs achieved an F1-score of 0.8871 for flakiness detection but only 0.5839 for root cause identification. We introduced an automated flaky test detection framework using machine learning, showing promising results but highlighting the need for improved root cause detection and classification in large quantum codebases. Future work will focus on improving detection techniques and developing automatic flaky test fixes.
Abstract:Recent research has shown that pre-trained vision-language models are effective at identifying out-of-distribution (OOD) samples by using negative labels as guidance. However, employing consistent negative labels across different OOD datasets often results in semantic misalignments, as these text labels may not accurately reflect the actual space of OOD images. To overcome this issue, we introduce \textit{adaptive negative proxies}, which are dynamically generated during testing by exploring actual OOD images, to align more closely with the underlying OOD label space and enhance the efficacy of negative proxy guidance. Specifically, our approach utilizes a feature memory bank to selectively cache discriminative features from test images, representing the targeted OOD distribution. This facilitates the creation of proxies that can better align with specific OOD datasets. While task-adaptive proxies average features to reflect the unique characteristics of each dataset, the sample-adaptive proxies weight features based on their similarity to individual test samples, exploring detailed sample-level nuances. The final score for identifying OOD samples integrates static negative labels with our proposed adaptive proxies, effectively combining textual and visual knowledge for enhanced performance. Our method is training-free and annotation-free, and it maintains fast testing speed. Extensive experiments across various benchmarks demonstrate the effectiveness of our approach, abbreviated as AdaNeg. Notably, on the large-scale ImageNet benchmark, our AdaNeg significantly outperforms existing methods, with a 2.45\% increase in AUROC and a 6.48\% reduction in FPR95. Codes are available at \url{https://github.com/YBZh/OpenOOD-VLM}.
Abstract:This research delves into the problem of interactive editing of human motion generation. Previous motion diffusion models lack explicit modeling of the word-level text-motion correspondence and good explainability, hence restricting their fine-grained editing ability. To address this issue, we propose an attention-based motion diffusion model, namely MotionCLR, with CLeaR modeling of attention mechanisms. Technically, MotionCLR models the in-modality and cross-modality interactions with self-attention and cross-attention, respectively. More specifically, the self-attention mechanism aims to measure the sequential similarity between frames and impacts the order of motion features. By contrast, the cross-attention mechanism works to find the fine-grained word-sequence correspondence and activate the corresponding timesteps in the motion sequence. Based on these key properties, we develop a versatile set of simple yet effective motion editing methods via manipulating attention maps, such as motion (de-)emphasizing, in-place motion replacement, and example-based motion generation, etc. For further verification of the explainability of the attention mechanism, we additionally explore the potential of action-counting and grounded motion generation ability via attention maps. Our experimental results show that our method enjoys good generation and editing ability with good explainability.
Abstract:While image generation with diffusion models has achieved a great success, generating images of higher resolution than the training size remains a challenging task due to the high computational cost. Current methods typically perform the entire sampling process at full resolution and process all frequency components simultaneously, contradicting with the inherent coarse-to-fine nature of latent diffusion models and wasting computations on processing premature high-frequency details at early diffusion stages. To address this issue, we introduce an efficient $\textbf{Fre}$quency-aware $\textbf{Ca}$scaded $\textbf{S}$ampling framework, $\textbf{FreCaS}$ in short, for higher-resolution image generation. FreCaS decomposes the sampling process into cascaded stages with gradually increased resolutions, progressively expanding frequency bands and refining the corresponding details. We propose an innovative frequency-aware classifier-free guidance (FA-CFG) strategy to assign different guidance strengths for different frequency components, directing the diffusion model to add new details in the expanded frequency domain of each stage. Additionally, we fuse the cross-attention maps of previous and current stages to avoid synthesizing unfaithful layouts. Experiments demonstrate that FreCaS significantly outperforms state-of-the-art methods in image quality and generation speed. In particular, FreCaS is about 2.86$\times$ and 6.07$\times$ faster than ScaleCrafter and DemoFusion in generating a 2048$\times$2048 image using a pre-trained SDXL model and achieves an FID$_b$ improvement of 11.6 and 3.7, respectively. FreCaS can be easily extended to more complex models such as SD3. The source code of FreCaS can be found at $\href{\text{https://github.com/xtudbxk/FreCaS}}{https://github.com/xtudbxk/FreCaS}$.