Abstract:With the breakthrough of large models, Segment Anything Model (SAM) and its extensions have been attempted to apply in diverse tasks of computer vision. Underwater salient instance segmentation is a foundational and vital step for various underwater vision tasks, which often suffer from low segmentation accuracy due to the complex underwater circumstances and the adaptive ability of models. Moreover, the lack of large-scale datasets with pixel-level salient instance annotations has impeded the development of machine learning techniques in this field. To address these issues, we construct the first large-scale underwater salient instance segmentation dataset (USIS10K), which contains 10,632 underwater images with pixel-level annotations in 7 categories from various underwater scenes. Then, we propose an Underwater Salient Instance Segmentation architecture based on Segment Anything Model (USIS-SAM) specifically for the underwater domain. We devise an Underwater Adaptive Visual Transformer (UA-ViT) encoder to incorporate underwater domain visual prompts into the segmentation network. We further design an out-of-the-box underwater Salient Feature Prompter Generator (SFPG) to automatically generate salient prompters instead of explicitly providing foreground points or boxes as prompts in SAM. Comprehensive experimental results show that our USIS-SAM method can achieve superior performance on USIS10K datasets compared to the state-of-the-art methods. Datasets and codes are released on https://github.com/LiamLian0727/USIS10K.
Abstract:Recursive least squares (RLS) algorithms were once widely used for training small-scale neural networks, due to their fast convergence. However, previous RLS algorithms are unsuitable for training deep neural networks (DNNs), since they have high computational complexity and too many preconditions. In this paper, to overcome these drawbacks, we propose three novel RLS optimization algorithms for training feedforward neural networks, convolutional neural networks and recurrent neural networks (including long short-term memory networks), by using the error backpropagation and our average-approximation RLS method, together with the equivalent gradients of the linear least squares loss function with respect to the linear outputs of hidden layers. Compared with previous RLS optimization algorithms, our algorithms are simple and elegant. They can be viewed as an improved stochastic gradient descent (SGD) algorithm, which uses the inverse autocorrelation matrix of each layer as the adaptive learning rate. Their time and space complexities are only several times those of SGD. They only require the loss function to be the mean squared error and the activation function of the output layer to be invertible. In fact, our algorithms can be also used in combination with other first-order optimization algorithms without requiring these two preconditions. In addition, we present two improved methods for our algorithms. Finally, we demonstrate their effectiveness compared to the Adam algorithm on MNIST, CIFAR-10 and IMDB datasets, and investigate the influences of their hyperparameters experimentally.