Abstract:Despite the promising performance of current video segmentation models on existing benchmarks, these models still struggle with complex scenes. In this paper, we introduce the 6th Large-scale Video Object Segmentation (LSVOS) challenge in conjunction with ECCV 2024 workshop. This year's challenge includes two tasks: Video Object Segmentation (VOS) and Referring Video Object Segmentation (RVOS). In this year, we replace the classic YouTube-VOS and YouTube-RVOS benchmark with latest datasets MOSE, LVOS, and MeViS to assess VOS under more challenging complex environments. This year's challenge attracted 129 registered teams from more than 20 institutes across over 8 countries. This report include the challenge and dataset introduction, and the methods used by top 7 teams in two tracks. More details can be found in our homepage https://lsvos.github.io/.
Abstract:Video Object Segmentation (VOS) task aims to segmenting a particular object instance throughout the entire video sequence given only the object mask of the first frame. Recently, Segment Anything Model 2 (SAM 2) is proposed, which is a foundation model towards solving promptable visual segmentation in images and videos. SAM 2 builds a data engine, which improves model and data via user interaction, to collect the largest video segmentation dataset to date. SAM 2 is a simple transformer architecture with streaming memory for real-time video processing, which trained on the date provides strong performance across a wide range of tasks. In this work, we evaluate the zero-shot performance of SAM 2 on the more challenging VOS datasets MOSE and LVOS. Without fine-tuning on the training set, SAM 2 achieved 75.79 J&F on the test set and ranked 4th place for 6th LSVOS Challenge VOS Track.
Abstract:Referring video object segmentation (RVOS) relies on natural language expressions to segment target objects in video. In this year, LSVOS Challenge RVOS Track replaced the origin YouTube-RVOS benchmark with MeViS. MeViS focuses on referring the target object in a video through its motion descriptions instead of static attributes, posing a greater challenge to RVOS task. In this work, we integrate strengths of that leading RVOS and VOS models to build up a simple and effective pipeline for RVOS. Firstly, We finetune the state-of-the-art RVOS model to obtain mask sequences that are correlated with language descriptions. Secondly, based on a reliable and high-quality key frames, we leverage VOS model to enhance the quality and temporal consistency of the mask results. Finally, we further improve the performance of the RVOS model using semi-supervised learning. Our solution achieved 62.57 J&F on the MeViS test set and ranked 1st place for 6th LSVOS Challenge RVOS Track.
Abstract:This study explores the emerging area of continual panoptic segmentation, highlighting three key balances. First, we introduce past-class backtrace distillation to balance the stability of existing knowledge with the adaptability to new information. This technique retraces the features associated with past classes based on the final label assignment results, performing knowledge distillation targeting these specific features from the previous model while allowing other features to flexibly adapt to new information. Additionally, we introduce a class-proportional memory strategy, which aligns the class distribution in the replay sample set with that of the historical training data. This strategy maintains a balanced class representation during replay, enhancing the utility of the limited-capacity replay sample set in recalling prior classes. Moreover, recognizing that replay samples are annotated only for the classes of their original step, we devise balanced anti-misguidance losses, which combat the impact of incomplete annotations without incurring classification bias. Building upon these innovations, we present a new method named Balanced Continual Panoptic Segmentation (BalConpas). Our evaluation on the challenging ADE20K dataset demonstrates its superior performance compared to existing state-of-the-art methods. The official code is available at https://github.com/jinpeng0528/BalConpas.
Abstract:With the breakthrough of large models, Segment Anything Model (SAM) and its extensions have been attempted to apply in diverse tasks of computer vision. Underwater salient instance segmentation is a foundational and vital step for various underwater vision tasks, which often suffer from low segmentation accuracy due to the complex underwater circumstances and the adaptive ability of models. Moreover, the lack of large-scale datasets with pixel-level salient instance annotations has impeded the development of machine learning techniques in this field. To address these issues, we construct the first large-scale underwater salient instance segmentation dataset (USIS10K), which contains 10,632 underwater images with pixel-level annotations in 7 categories from various underwater scenes. Then, we propose an Underwater Salient Instance Segmentation architecture based on Segment Anything Model (USIS-SAM) specifically for the underwater domain. We devise an Underwater Adaptive Visual Transformer (UA-ViT) encoder to incorporate underwater domain visual prompts into the segmentation network. We further design an out-of-the-box underwater Salient Feature Prompter Generator (SFPG) to automatically generate salient prompters instead of explicitly providing foreground points or boxes as prompts in SAM. Comprehensive experimental results show that our USIS-SAM method can achieve superior performance on USIS10K datasets compared to the state-of-the-art methods. Datasets and codes are released on https://github.com/LiamLian0727/USIS10K.
Abstract:Although recent generative image compression methods have demonstrated impressive potential in optimizing the rate-distortion-perception trade-off, they still face the critical challenge of flexible rate adaption to diverse compression necessities and scenarios. To overcome this challenge, this paper proposes a Controllable Generative Image Compression framework, Control-GIC, the first capable of fine-grained bitrate adaption across a broad spectrum while ensuring high-fidelity and generality compression. We base Control-GIC on a VQGAN framework representing an image as a sequence of variable-length codes (i.e. VQ-indices), which can be losslessly compressed and exhibits a direct positive correlation with the bitrates. Therefore, drawing inspiration from the classical coding principle, we naturally correlate the information density of local image patches with their granular representations, to achieve dynamic adjustment of the code quantity following different granularity decisions. This implies we can flexibly determine a proper allocation of granularity for the patches to acquire desirable compression rates. We further develop a probabilistic conditional decoder that can trace back to historic encoded multi-granularity representations according to transmitted codes, and then reconstruct hierarchical granular features in the formalization of conditional probability, enabling more informative aggregation to improve reconstruction realism. Our experiments show that Control-GIC allows highly flexible and controllable bitrate adaption and even once compression on an entire dataset to fulfill constrained bitrate conditions. Experimental results demonstrate its superior performance over recent state-of-the-art methods.
Abstract:This paper explores the size-invariance of evaluation metrics in Salient Object Detection (SOD), especially when multiple targets of diverse sizes co-exist in the same image. We observe that current metrics are size-sensitive, where larger objects are focused, and smaller ones tend to be ignored. We argue that the evaluation should be size-invariant because bias based on size is unjustified without additional semantic information. In pursuit of this, we propose a generic approach that evaluates each salient object separately and then combines the results, effectively alleviating the imbalance. We further develop an optimization framework tailored to this goal, achieving considerable improvements in detecting objects of different sizes. Theoretically, we provide evidence supporting the validity of our new metrics and present the generalization analysis of SOD. Extensive experiments demonstrate the effectiveness of our method. The code is available at https://github.com/Ferry-Li/SI-SOD.
Abstract:Diffusion models (DM) have achieved remarkable promise in image super-resolution (SR). However, most of them are tailored to solving non-blind inverse problems with fixed known degradation settings, limiting their adaptability to real-world applications that involve complex unknown degradations. In this work, we propose BlindDiff, a DM-based blind SR method to tackle the blind degradation settings in SISR. BlindDiff seamlessly integrates the MAP-based optimization into DMs, which constructs a joint distribution of the low-resolution (LR) observation, high-resolution (HR) data, and degradation kernels for the data and kernel priors, and solves the blind SR problem by unfolding MAP approach along with the reverse process. Unlike most DMs, BlindDiff firstly presents a modulated conditional transformer (MCFormer) that is pre-trained with noise and kernel constraints, further serving as a posterior sampler to provide both priors simultaneously. Then, we plug a simple yet effective kernel-aware gradient term between adjacent sampling iterations that guides the diffusion model to learn degradation consistency knowledge. This also enables to joint refine the degradation model as well as HR images by observing the previous denoised sample. With the MAP-based reverse diffusion process, we show that BlindDiff advocates alternate optimization for blur kernel estimation and HR image restoration in a mutual reinforcing manner. Experiments on both synthetic and real-world datasets show that BlindDiff achieves the state-of-the-art performance with significant model complexity reduction compared to recent DM-based methods. Code will be available at \url{https://github.com/lifengcs/BlindDiff}
Abstract:Color information is the most commonly used prior knowledge for depth map super-resolution (DSR), which can provide high-frequency boundary guidance for detail restoration. However, its role and functionality in DSR have not been fully developed. In this paper, we rethink the utilization of color information and propose a hierarchical color guidance network to achieve DSR. On the one hand, the low-level detail embedding module is designed to supplement high-frequency color information of depth features in a residual mask manner at the low-level stages. On the other hand, the high-level abstract guidance module is proposed to maintain semantic consistency in the reconstruction process by using a semantic mask that encodes the global guidance information. The color information of these two dimensions plays a role in the front and back ends of the attention-based feature projection (AFP) module in a more comprehensive form. Simultaneously, the AFP module integrates the multi-scale content enhancement block and adaptive attention projection block to make full use of multi-scale information and adaptively project critical restoration information in an attention manner for DSR. Compared with the state-of-the-art methods on four benchmark datasets, our method achieves more competitive performance both qualitatively and quantitatively.
Abstract:Previous Few-Shot Segmentation (FSS) approaches exclusively utilize support features for prototype generation, neglecting the specific requirements of the query. To address this, we present the Query-guided Prototype Evolution Network (QPENet), a new method that integrates query features into the generation process of foreground and background prototypes, thereby yielding customized prototypes attuned to specific queries. The evolution of the foreground prototype is accomplished through a \textit{support-query-support} iterative process involving two new modules: Pseudo-prototype Generation (PPG) and Dual Prototype Evolution (DPE). The PPG module employs support features to create an initial prototype for the preliminary segmentation of the query image, resulting in a pseudo-prototype reflecting the unique needs of the current query. Subsequently, the DPE module performs reverse segmentation on support images using this pseudo-prototype, leading to the generation of evolved prototypes, which can be considered as custom solutions. As for the background prototype, the evolution begins with a global background prototype that represents the generalized features of all training images. We also design a Global Background Cleansing (GBC) module to eliminate potential adverse components mirroring the characteristics of the current foreground class. Experimental results on the PASCAL-$5^i$ and COCO-$20^i$ datasets attest to the substantial enhancements achieved by QPENet over prevailing state-of-the-art techniques, underscoring the validity of our ideas.