Abstract:Extending the context length of Language Models (LMs) by improving Rotary Position Embedding (RoPE) has become a trend. While existing works mainly address RoPE's limitations within attention mechanism, this paper provides an analysis across nearly all parts of LMs, uncovering their adverse effects on length generalization for RoPE-based attention. Using Discrete Signal Processing theory, we show that RoPE enables periodic attention by implicitly achieving Non-Uniform Discrete Fourier Transform. However, this periodicity is undermined by the spectral damage caused by: 1) linear layers and activation functions outside of attention; 2) insufficiently trained frequency components brought by time-domain truncation. Building on our observations, we propose Fourier Position Embedding (FoPE), which enhances attention's frequency-domain properties to improve both its periodic extension and length generalization. FoPE constructs Fourier Series and zero-outs the destructive frequency components, increasing model robustness against the spectrum damage. Experiments across various model scales show that, within varying context windows, FoPE can maintain a more stable perplexity and a more consistent accuracy in a needle-in-haystack task compared to RoPE and ALiBi. Several analyses and ablations bring further support to our method and theoretical modeling.
Abstract:Alignment, endowing a pre-trained Large language model (LLM) with the ability to follow instructions, is crucial for its real-world applications. Conventional supervised fine-tuning (SFT) methods formalize it as causal language modeling typically with a cross-entropy objective, requiring a large amount of high-quality instruction-response pairs. However, the quality of widely used SFT datasets can not be guaranteed due to the high cost and intensive labor for the creation and maintenance in practice. To overcome the limitations associated with the quality of SFT datasets, we introduce a novel \textbf{p}reference-\textbf{o}riented supervised \textbf{f}ine-\textbf{t}uning approach, namely PoFT. The intuition is to boost SFT by imposing a particular preference: \textit{favoring the target model over aligned LLMs on the same SFT data.} This preference encourages the target model to predict a higher likelihood than that predicted by the aligned LLMs, incorporating assessment information on data quality (i.e., predicted likelihood by the aligned LLMs) into the training process. Extensive experiments are conducted, and the results validate the effectiveness of the proposed method. PoFT achieves stable and consistent improvements over the SFT baselines across different training datasets and base models. Moreover, we prove that PoFT can be integrated with existing SFT data filtering methods to achieve better performance, and further improved by following preference optimization procedures, such as DPO.
Abstract:We present a novel approach to mesh shape editing, building on recent progress in 3D reconstruction from multi-view images. We formulate shape editing as a conditional reconstruction problem, where the model must reconstruct the input shape with the exception of a specified 3D region, in which the geometry should be generated from the conditional signal. To this end, we train a conditional Large Reconstruction Model (LRM) for masked reconstruction, using multi-view consistent masks rendered from a randomly generated 3D occlusion, and using one clean viewpoint as the conditional signal. During inference, we manually define a 3D region to edit and provide an edited image from a canonical viewpoint to fill in that region. We demonstrate that, in just a single forward pass, our method not only preserves the input geometry in the unmasked region through reconstruction capabilities on par with SoTA, but is also expressive enough to perform a variety of mesh edits from a single image guidance that past works struggle with, while being 10x faster than the top-performing competing prior work.
Abstract:We present Make-A-Texture, a new framework that efficiently synthesizes high-resolution texture maps from textual prompts for given 3D geometries. Our approach progressively generates textures that are consistent across multiple viewpoints with a depth-aware inpainting diffusion model, in an optimized sequence of viewpoints determined by an automatic view selection algorithm. A significant feature of our method is its remarkable efficiency, achieving a full texture generation within an end-to-end runtime of just 3.07 seconds on a single NVIDIA H100 GPU, significantly outperforming existing methods. Such an acceleration is achieved by optimizations in the diffusion model and a specialized backprojection method. Moreover, our method reduces the artifacts in the backprojection phase, by selectively masking out non-frontal faces, and internal faces of open-surfaced objects. Experimental results demonstrate that Make-A-Texture matches or exceeds the quality of other state-of-the-art methods. Our work significantly improves the applicability and practicality of texture generation models for real-world 3D content creation, including interactive creation and text-guided texture editing.
Abstract:Recent sparse multi-view scene reconstruction advances like DUSt3R and MASt3R no longer require camera calibration and camera pose estimation. However, they only process a pair of views at a time to infer pixel-aligned pointmaps. When dealing with more than two views, a combinatorial number of error prone pairwise reconstructions are usually followed by an expensive global optimization, which often fails to rectify the pairwise reconstruction errors. To handle more views, reduce errors, and improve inference time, we propose the fast single-stage feed-forward network MV-DUSt3R. At its core are multi-view decoder blocks which exchange information across any number of views while considering one reference view. To make our method robust to reference view selection, we further propose MV-DUSt3R+, which employs cross-reference-view blocks to fuse information across different reference view choices. To further enable novel view synthesis, we extend both by adding and jointly training Gaussian splatting heads. Experiments on multi-view stereo reconstruction, multi-view pose estimation, and novel view synthesis confirm that our methods improve significantly upon prior art. Code will be released.
Abstract:In recent years, Parameter-Efficient Fine-Tuning (PEFT) methods like Low-Rank Adaptation (LoRA) have significantly enhanced the adaptability of large-scale pre-trained models. Weight-Decomposed Low-Rank Adaptation (DoRA) improves upon LoRA by separating the magnitude and direction components of the weight matrix, leading to superior performance. However, DoRA's improvements are limited to the vertical dimension, resulting in an asymmetrical pattern between horizontal and vertical dimensions. This paper introduces BoRA, an innovative extension of LoRA and DoRA, characterized by symmetrical properties across horizontal and vertical dimensions. Our approach optimizes the weight matrix symmetrically by adjusting both column-wise and row-wise magnitudes. Extensive experiments demonstrate that BoRA surpasses state-of-the-art PEFT methods, including LoRA and DoRA, achieving superior results across various benchmarks.
Abstract:Long-Form Question Answering (LFQA) refers to generating in-depth, paragraph-level responses to open-ended questions. Although lots of LFQA methods are developed, evaluating LFQA effectively and efficiently remains challenging due to its high complexity and cost. Therefore, there is no standard benchmark for LFQA evaluation till now. To address this gap, we make the first attempt by proposing a well-constructed, reference-based benchmark named Chinese exAmination for LFQA Evaluation (CALF), aiming to rigorously assess the performance of automatic evaluation metrics for LFQA. The CALF benchmark is derived from Chinese examination questions that have been translated into English. It includes up to 1476 examples consisting of knowledge-intensive and nuanced responses. Our evaluation comprises three different settings to ana lyze the behavior of automatic metrics comprehensively. We conducted extensive experiments on 7 traditional evaluation metrics, 3 prompt-based metrics, and 3 trained evaluation metrics, and tested on agent systems for the LFQA evaluation. The results reveal that none of the current automatic evaluation metrics shows comparable performances with humans, indicating that they cannot capture dense information contained in long-form responses well. In addition, we provide a detailed analysis of the reasons why automatic evaluation metrics fail when evaluating LFQA, offering valuable insights to advance LFQA evaluation systems. Dataset and associated codes can be accessed at our GitHub repository.
Abstract:While style transfer techniques have been well-developed for 2D image stylization, the extension of these methods to 3D scenes remains relatively unexplored. Existing approaches demonstrate proficiency in transferring colors and textures but often struggle with replicating the geometry of the scenes. In our work, we leverage an explicit Gaussian Splatting (GS) representation and directly match the distributions of Gaussians between style and content scenes using the Earth Mover's Distance (EMD). By employing the entropy-regularized Wasserstein-2 distance, we ensure that the transformation maintains spatial smoothness. Additionally, we decompose the scene stylization problem into smaller chunks to enhance efficiency. This paradigm shift reframes stylization from a pure generative process driven by latent space losses to an explicit matching of distributions between two Gaussian representations. Our method achieves high-resolution 3D stylization by faithfully transferring details from 3D style scenes onto the content scene. Furthermore, WaSt-3D consistently delivers results across diverse content and style scenes without necessitating any training, as it relies solely on optimization-based techniques. See our project page for additional results and source code: $\href{https://compvis.github.io/wast3d/}{https://compvis.github.io/wast3d/}$.
Abstract:Despite the promising performance of current video segmentation models on existing benchmarks, these models still struggle with complex scenes. In this paper, we introduce the 6th Large-scale Video Object Segmentation (LSVOS) challenge in conjunction with ECCV 2024 workshop. This year's challenge includes two tasks: Video Object Segmentation (VOS) and Referring Video Object Segmentation (RVOS). In this year, we replace the classic YouTube-VOS and YouTube-RVOS benchmark with latest datasets MOSE, LVOS, and MeViS to assess VOS under more challenging complex environments. This year's challenge attracted 129 registered teams from more than 20 institutes across over 8 countries. This report include the challenge and dataset introduction, and the methods used by top 7 teams in two tracks. More details can be found in our homepage https://lsvos.github.io/.
Abstract:Summarization is a fundamental task in natural language processing (NLP) and since large language models (LLMs), such as GPT-4 and Claude, come out, increasing attention has been paid to long-form summarization whose input sequences are much longer, indicating more information contained. The current evaluation metrics either use similarity-based metrics like ROUGE and BERTScore which rely on similarity and fail to consider informativeness or LLM-based metrics, lacking quantitative analysis of information richness and are rather subjective. In this paper, we propose a new evaluation metric called EVA-Score using Atomic Fact Chain Generation and Document-level Relation Extraction together to automatically calculate the informativeness and give a definite number as an information score. Experiment results show that our metric shows a state-of-the-art correlation with humans. We also re-evaluate the performance of LLMs on long-form summarization comprehensively from the information aspect, forecasting future ways to use LLMs for long-form summarization.