Abstract:We introduce MedXpertQA, a highly challenging and comprehensive benchmark to evaluate expert-level medical knowledge and advanced reasoning. MedXpertQA includes 4,460 questions spanning 17 specialties and 11 body systems. It includes two subsets, Text for text evaluation and MM for multimodal evaluation. Notably, MM introduces expert-level exam questions with diverse images and rich clinical information, including patient records and examination results, setting it apart from traditional medical multimodal benchmarks with simple QA pairs generated from image captions. MedXpertQA applies rigorous filtering and augmentation to address the insufficient difficulty of existing benchmarks like MedQA, and incorporates specialty board questions to improve clinical relevance and comprehensiveness. We perform data synthesis to mitigate data leakage risk and conduct multiple rounds of expert reviews to ensure accuracy and reliability. We evaluate 16 leading models on MedXpertQA. Moreover, medicine is deeply connected to real-world decision-making, providing a rich and representative setting for assessing reasoning abilities beyond mathematics and code. To this end, we develop a reasoning-oriented subset to facilitate the assessment of o1-like models.
Abstract:With the development of artificial intelligence, its contribution to science is evolving from simulating a complex problem to automating entire research processes and producing novel discoveries. Achieving this advancement requires both specialized general models grounded in real-world scientific data and iterative, exploratory frameworks that mirror human scientific methodologies. In this paper, we present PROTEUS, a fully automated system for scientific discovery from raw proteomics data. PROTEUS uses large language models (LLMs) to perform hierarchical planning, execute specialized bioinformatics tools, and iteratively refine analysis workflows to generate high-quality scientific hypotheses. The system takes proteomics datasets as input and produces a comprehensive set of research objectives, analysis results, and novel biological hypotheses without human intervention. We evaluated PROTEUS on 12 proteomics datasets collected from various biological samples (e.g. immune cells, tumors) and different sample types (single-cell and bulk), generating 191 scientific hypotheses. These were assessed using both automatic LLM-based scoring on 5 metrics and detailed reviews from human experts. Results demonstrate that PROTEUS consistently produces reliable, logically coherent results that align well with existing literature while also proposing novel, evaluable hypotheses. The system's flexible architecture facilitates seamless integration of diverse analysis tools and adaptation to different proteomics data types. By automating complex proteomics analysis workflows and hypothesis generation, PROTEUS has the potential to considerably accelerate the pace of scientific discovery in proteomics research, enabling researchers to efficiently explore large-scale datasets and uncover biological insights.
Abstract:Chatbots have become popular in educational settings, revolutionizing how students interact with material and how teachers teach. We present Curriculum-Driven EduBot, a framework for developing a chatbot that combines the interactive features of chatbots with the systematic material of English textbooks to assist students in enhancing their conversational skills. We begin by extracting pertinent topics from textbooks and then using large language models to generate dialogues related to these topics. We then fine-tune an open-source LLM using our generated conversational data to create our curriculum-driven chatbot. User studies demonstrate that our chatbot outperforms ChatGPT in leading curriculum-based dialogues and adapting its dialogue to match the user's English proficiency level. By combining traditional textbook methodologies with conversational AI, our approach offers learners an interactive tool that aligns with their curriculum and provides user-tailored conversation practice. This facilitates meaningful student-bot dialogues and enriches the overall learning experience within the curriculum's pedagogical framework.
Abstract:Recommender systems are essential for online applications, and sequential recommendation has enjoyed significant prevalence due to its expressive ability to capture dynamic user interests. However, previous sequential modeling methods still have limitations in capturing contextual information. The primary reason for this issue is that language models often lack an understanding of domain-specific knowledge and item-related textual content. To address this issue, we adopt a new sequential recommendation paradigm and propose LANCER, which leverages the semantic understanding capabilities of pre-trained language models to generate personalized recommendations. Our approach bridges the gap between language models and recommender systems, resulting in more human-like recommendations. We demonstrate the effectiveness of our approach through experiments on several benchmark datasets, showing promising results and providing valuable insights into the influence of our model on sequential recommendation tasks. Furthermore, our experimental codes are publicly available.