Abstract:Multivariate time series forecasting plays a crucial role in various real-world applications. Significant efforts have been made to integrate advanced network architectures and training strategies that enhance the capture of temporal dependencies, thereby improving forecasting accuracy. On the other hand, mainstream approaches typically utilize a single unified model with simplistic channel-mixing embedding or cross-channel attention operations to account for the critical intricate inter-channel dependencies. Moreover, some methods even trade capacity for robust prediction based on the channel-independent assumption. Nonetheless, as time series data may display distinct evolving patterns due to the unique characteristics of each channel (including multiple strong seasonalities and trend changes), the unified modeling methods could yield suboptimal results. To this end, we propose DisenTS, a tailored framework for modeling disentangled channel evolving patterns in general multivariate time series forecasting. The central idea of DisenTS is to model the potential diverse patterns within the multivariate time series data in a decoupled manner. Technically, the framework employs multiple distinct forecasting models, each tasked with uncovering a unique evolving pattern. To guide the learning process without supervision of pattern partition, we introduce a novel Forecaster Aware Gate (FAG) module that generates the routing signals adaptively according to both the forecasters' states and input series' characteristics. The forecasters' states are derived from the Linear Weight Approximation (LWA) strategy, which quantizes the complex deep neural networks into compact matrices. Additionally, the Similarity Constraint (SC) is further proposed to guide each model to specialize in an underlying pattern by minimizing the mutual information between the representations.
Abstract:Large Language Models (LLMs) have exhibited remarkable potential across a wide array of reasoning tasks, including logical reasoning. Although massive efforts have been made to empower the logical reasoning ability of LLMs via external logical symbolic solvers, crucial challenges of the poor generalization ability to questions with different features and inevitable question information loss of symbolic solver-driven approaches remain unresolved. To mitigate these issues, we introduce LINA, a LLM-driven neuro-symbolic approach for faithful logical reasoning. By enabling an LLM to autonomously perform the transition from propositional logic extraction to sophisticated logical reasoning, LINA not only bolsters the resilience of the reasoning process but also eliminates the dependency on external solvers. Additionally, through its adoption of a hypothetical-deductive reasoning paradigm, LINA effectively circumvents the expansive search space challenge that plagues traditional forward reasoning methods. Empirical evaluations demonstrate that LINA substantially outperforms both established propositional logic frameworks and conventional prompting techniques across a spectrum of five logical reasoning tasks. Specifically, LINA achieves an improvement of 24.34% over LINC on the FOLIO dataset, while also surpassing prompting strategies like CoT and CoT-SC by up to 24.02%. Our code is available at https://github.com/wufeiwuwoshihua/nshy.
Abstract:Leveraging large language models (LLMs) has garnered increasing attention and introduced novel perspectives in time series classification. However, existing approaches often overlook the crucial dynamic temporal information inherent in time series data and face challenges in aligning this data with textual semantics. To address these limitations, we propose HiTime, a hierarchical multi-modal model that seamlessly integrates temporal information into LLMs for multivariate time series classification (MTSC). Our model employs a hierarchical feature encoder to capture diverse aspects of time series data through both data-specific and task-specific embeddings. To facilitate semantic space alignment between time series and text, we introduce a dual-view contrastive alignment module that bridges the gap between modalities. Additionally, we adopt a hybrid prompting strategy to fine-tune the pre-trained LLM in a parameter-efficient manner. By effectively incorporating dynamic temporal features and ensuring semantic alignment, HiTime enables LLMs to process continuous time series data and achieves state-of-the-art classification performance through text generation. Extensive experiments on benchmark datasets demonstrate that HiTime significantly enhances time series classification accuracy compared to most competitive baseline methods. Our findings highlight the potential of integrating temporal features into LLMs, paving the way for advanced time series analysis. The code is publicly available for further research and validation. Our codes are publicly available1.
Abstract:Time series forecasting is vital in numerous web applications, influencing critical decision-making across industries. While diffusion models have recently gained increasing popularity for this task, we argue they suffer from a significant drawback: indiscriminate noise addition to the original time series followed by denoising, which can obscure underlying dynamic evolving trend and complicate forecasting. To address this limitation, we propose a novel flexible decoupled framework (FDF) that learns high-quality time series representations for enhanced forecasting performance. A key characteristic of our approach leverages the inherent inductive bias of time series data by decomposing it into trend and seasonal components, each modeled separately to enable decoupled analysis and modeling. Specifically, we propose an innovative Conditional Denoising Seasonal Module (CDSM) within the diffusion model, which leverages statistical information from the historical window to conditionally model the complex seasonal component. Notably, we incorporate a Polynomial Trend Module (PTM) to effectively capture the smooth trend component, thereby enhancing the model's ability to represent temporal dependencies. Extensive experiments validate the effectiveness of our framework, demonstrating superior performance over existing methods and higlighting its flexibility in time series forecasting. We hope our work can bring a new perspective for time series forecasting. We intend to make our code publicly available as open-source in the future.
Abstract:Learning recommender systems with multi-class optimization objective is a prevalent setting in recommendation. However, as observed user feedback often accounts for a tiny fraction of the entire item pool, the standard Softmax loss tends to ignore the difference between potential positive feedback and truly negative feedback. To address this challenge, we propose a novel decoupled soft label optimization framework to consider the objectives as two aspects by leveraging soft labels, including target confidence and the latent interest distribution of non-target items. Futhermore, based on our carefully theoretical analysis, we design a decoupled loss function to flexibly adjust the importance of these two aspects. To maximize the performance of the proposed method, we additionally present a sensible soft-label generation algorithm that models a label propagation algorithm to explore users' latent interests in unobserved feedback via neighbors. We conduct extensive experiments on various recommendation system models and public datasets, the results demonstrate the effectiveness and generality of the proposed method.
Abstract:Self-supervised learning has become a popular and effective approach for enhancing time series forecasting, enabling models to learn universal representations from unlabeled data. However, effectively capturing both the global sequence dependence and local detail features within time series data remains challenging. To address this, we propose a novel generative self-supervised method called TimeDART, denoting Diffusion Auto-regressive Transformer for Time series forecasting. In TimeDART, we treat time series patches as basic modeling units. Specifically, we employ an self-attention based Transformer encoder to model the dependencies of inter-patches. Additionally, we introduce diffusion and denoising mechanisms to capture the detail locality features of intra-patch. Notably, we design a cross-attention-based denoising decoder that allows for adjustable optimization difficulty in the self-supervised task, facilitating more effective self-supervised pre-training. Furthermore, the entire model is optimized in an auto-regressive manner to obtain transferable representations. Extensive experiments demonstrate that TimeDART achieves state-of-the-art fine-tuning performance compared to the most advanced competitive methods in forecasting tasks. Our code is publicly available at https://github.com/Melmaphother/TimeDART.
Abstract:Intraoperative hypotension (IOH) prediction using Mean Arterial Pressure (MAP) is a critical research area with significant implications for patient outcomes during surgery. However, existing approaches predominantly employ static modeling paradigms that overlook the dynamic nature of physiological signals. In this paper, we introduce a novel Hybrid Multi-Factor (HMF) framework that reformulates IOH prediction as a blood pressure forecasting task. Our framework leverages a Transformer encoder, specifically designed to effectively capture the temporal evolution of MAP series through a patch-based input representation, which segments the input physiological series into informative patches for accurate analysis. To address the challenges of distribution shift in physiological series, our approach incorporates two key innovations: (1) Symmetric normalization and de-normalization processes help mitigate distributional drift in statistical properties, thereby ensuring the model's robustness across varying conditions, and (2) Sequence decomposition, which disaggregates the input series into trend and seasonal components, allowing for a more precise modeling of inherent sequence dependencies. Extensive experiments conducted on two real-world datasets demonstrate the superior performance of our approach compared to competitive baselines, particularly in capturing the nuanced variations in input series that are crucial for accurate IOH prediction.
Abstract:Federated recommendation (FedRec) preserves user privacy by enabling decentralized training of personalized models, but this architecture is inherently vulnerable to adversarial attacks. Significant research has been conducted on targeted attacks in FedRec systems, motivated by commercial and social influence considerations. However, much of this work has largely overlooked the differential robustness of recommendation models. Moreover, our empirical findings indicate that existing targeted attack methods achieve only limited effectiveness in Federated Sequential Recommendation (FSR) tasks. Driven by these observations, we focus on investigating targeted attacks in FSR and propose a novel dualview attack framework, named DV-FSR. This attack method uniquely combines a sampling-based explicit strategy with a contrastive learning-based implicit gradient strategy to orchestrate a coordinated attack. Additionally, we introduce a specific defense mechanism tailored for targeted attacks in FSR, aiming to evaluate the mitigation effects of the attack method we proposed. Extensive experiments validate the effectiveness of our proposed approach on representative sequential models.
Abstract:For the advancements of time series classification, scrutinizing previous studies, most existing methods adopt a common learning-to-classify paradigm - a time series classifier model tries to learn the relation between sequence inputs and target label encoded by one-hot distribution. Although effective, this paradigm conceals two inherent limitations: (1) encoding target categories with one-hot distribution fails to reflect the comparability and similarity between labels, and (2) it is very difficult to learn transferable model across domains, which greatly hinder the development of universal serving paradigm. In this work, we propose InstructTime, a novel attempt to reshape time series classification as a learning-to-generate paradigm. Relying on the powerful generative capacity of the pre-trained language model, the core idea is to formulate the classification of time series as a multimodal understanding task, in which both task-specific instructions and raw time series are treated as multimodal inputs while the label information is represented by texts. To accomplish this goal, three distinct designs are developed in the InstructTime. Firstly, a time series discretization module is designed to convert continuous time series into a sequence of hard tokens to solve the inconsistency issue across modal inputs. To solve the modality representation gap issue, for one thing, we introduce an alignment projected layer before feeding the transformed token of time series into language models. For another, we highlight the necessity of auto-regressive pre-training across domains, which can facilitate the transferability of the language model and boost the generalization performance. Extensive experiments are conducted over benchmark datasets, whose results uncover the superior performance of InstructTime and the potential for a universal foundation model in time series classification.
Abstract:Advancements in self-supervised pre-training (SSL) have significantly advanced the field of learning transferable time series representations, which can be very useful in enhancing the downstream task. Despite being effective, most existing works struggle to achieve cross-domain SSL pre-training, missing valuable opportunities to integrate patterns and features from different domains. The main challenge lies in the significant differences in the characteristics of time-series data across different domains, such as variations in the number of channels and temporal resolution scales. To address this challenge, we propose CrossTimeNet, a novel cross-domain SSL learning framework to learn transferable knowledge from various domains to largely benefit the target downstream task. One of the key characteristics of CrossTimeNet is the newly designed time series tokenization module, which could effectively convert the raw time series into a sequence of discrete tokens based on a reconstruction optimization process. Besides, we highlight that predicting a high proportion of corrupted tokens can be very helpful for extracting informative patterns across different domains during SSL pre-training, which has been largely overlooked in past years. Furthermore, unlike previous works, our work treats the pre-training language model (PLM) as the initialization of the encoder network, investigating the feasibility of transferring the knowledge learned by the PLM to the time series area. Through these efforts, the path to cross-domain pre-training of a generic time series model can be effectively paved. We conduct extensive experiments in a real-world scenario across various time series classification domains. The experimental results clearly confirm CrossTimeNet's superior performance.