Abstract:Text-to-image generative models excel in creating images from text but struggle with ensuring alignment and consistency between outputs and prompts. This paper introduces TextMatch, a novel framework that leverages multimodal optimization to address image-text discrepancies in text-to-image (T2I) generation and editing. TextMatch employs a scoring strategy powered by large language models (LLMs) and visual question-answering (VQA) models to evaluate semantic consistency between prompts and generated images. By integrating multimodal in-context learning and chain of thought reasoning, our method dynamically refines prompts through iterative optimization. This process ensures that the generated images better capture user intent of, resulting in higher fidelity and relevance. Extensive experiments demonstrate that TextMatch significantly improves text-image consistency across multiple benchmarks, establishing a reliable framework for advancing the capabilities of text-to-image generative models. Our code is available at https://anonymous.4open.science/r/TextMatch-F55C/.
Abstract:Leveraging large language models (LLMs) has garnered increasing attention and introduced novel perspectives in time series classification. However, existing approaches often overlook the crucial dynamic temporal information inherent in time series data and face challenges in aligning this data with textual semantics. To address these limitations, we propose HiTime, a hierarchical multi-modal model that seamlessly integrates temporal information into LLMs for multivariate time series classification (MTSC). Our model employs a hierarchical feature encoder to capture diverse aspects of time series data through both data-specific and task-specific embeddings. To facilitate semantic space alignment between time series and text, we introduce a dual-view contrastive alignment module that bridges the gap between modalities. Additionally, we adopt a hybrid prompting strategy to fine-tune the pre-trained LLM in a parameter-efficient manner. By effectively incorporating dynamic temporal features and ensuring semantic alignment, HiTime enables LLMs to process continuous time series data and achieves state-of-the-art classification performance through text generation. Extensive experiments on benchmark datasets demonstrate that HiTime significantly enhances time series classification accuracy compared to most competitive baseline methods. Our findings highlight the potential of integrating temporal features into LLMs, paving the way for advanced time series analysis. The code is publicly available for further research and validation. Our codes are publicly available1.
Abstract:Time series forecasting is vital in numerous web applications, influencing critical decision-making across industries. While diffusion models have recently gained increasing popularity for this task, we argue they suffer from a significant drawback: indiscriminate noise addition to the original time series followed by denoising, which can obscure underlying dynamic evolving trend and complicate forecasting. To address this limitation, we propose a novel flexible decoupled framework (FDF) that learns high-quality time series representations for enhanced forecasting performance. A key characteristic of our approach leverages the inherent inductive bias of time series data by decomposing it into trend and seasonal components, each modeled separately to enable decoupled analysis and modeling. Specifically, we propose an innovative Conditional Denoising Seasonal Module (CDSM) within the diffusion model, which leverages statistical information from the historical window to conditionally model the complex seasonal component. Notably, we incorporate a Polynomial Trend Module (PTM) to effectively capture the smooth trend component, thereby enhancing the model's ability to represent temporal dependencies. Extensive experiments validate the effectiveness of our framework, demonstrating superior performance over existing methods and higlighting its flexibility in time series forecasting. We hope our work can bring a new perspective for time series forecasting. We intend to make our code publicly available as open-source in the future.
Abstract:Advancements in self-supervised pre-training (SSL) have significantly advanced the field of learning transferable time series representations, which can be very useful in enhancing the downstream task. Despite being effective, most existing works struggle to achieve cross-domain SSL pre-training, missing valuable opportunities to integrate patterns and features from different domains. The main challenge lies in the significant differences in the characteristics of time-series data across different domains, such as variations in the number of channels and temporal resolution scales. To address this challenge, we propose CrossTimeNet, a novel cross-domain SSL learning framework to learn transferable knowledge from various domains to largely benefit the target downstream task. One of the key characteristics of CrossTimeNet is the newly designed time series tokenization module, which could effectively convert the raw time series into a sequence of discrete tokens based on a reconstruction optimization process. Besides, we highlight that predicting a high proportion of corrupted tokens can be very helpful for extracting informative patterns across different domains during SSL pre-training, which has been largely overlooked in past years. Furthermore, unlike previous works, our work treats the pre-training language model (PLM) as the initialization of the encoder network, investigating the feasibility of transferring the knowledge learned by the PLM to the time series area. Through these efforts, the path to cross-domain pre-training of a generic time series model can be effectively paved. We conduct extensive experiments in a real-world scenario across various time series classification domains. The experimental results clearly confirm CrossTimeNet's superior performance.
Abstract:The ability to incrementally learn new classes is crucial to the development of real-world artificial intelligence systems. In this paper, we focus on a challenging but practical few-shot class-incremental learning (FSCIL) problem. FSCIL requires CNN models to incrementally learn new classes from very few labelled samples, without forgetting the previously learned ones. To address this problem, we represent the knowledge using a neural gas (NG) network, which can learn and preserve the topology of the feature manifold formed by different classes. On this basis, we propose the TOpology-Preserving knowledge InCrementer (TOPIC) framework. TOPIC mitigates the forgetting of the old classes by stabilizing NG's topology and improves the representation learning for few-shot new classes by growing and adapting NG to new training samples. Comprehensive experimental results demonstrate that our proposed method significantly outperforms other state-of-the-art class-incremental learning methods on CIFAR100, miniImageNet, and CUB200 datasets.