Abstract:Time series forecasting is vital in numerous web applications, influencing critical decision-making across industries. While diffusion models have recently gained increasing popularity for this task, we argue they suffer from a significant drawback: indiscriminate noise addition to the original time series followed by denoising, which can obscure underlying dynamic evolving trend and complicate forecasting. To address this limitation, we propose a novel flexible decoupled framework (FDF) that learns high-quality time series representations for enhanced forecasting performance. A key characteristic of our approach leverages the inherent inductive bias of time series data by decomposing it into trend and seasonal components, each modeled separately to enable decoupled analysis and modeling. Specifically, we propose an innovative Conditional Denoising Seasonal Module (CDSM) within the diffusion model, which leverages statistical information from the historical window to conditionally model the complex seasonal component. Notably, we incorporate a Polynomial Trend Module (PTM) to effectively capture the smooth trend component, thereby enhancing the model's ability to represent temporal dependencies. Extensive experiments validate the effectiveness of our framework, demonstrating superior performance over existing methods and higlighting its flexibility in time series forecasting. We hope our work can bring a new perspective for time series forecasting. We intend to make our code publicly available as open-source in the future.
Abstract:The transformer architecture predominates across various models. As the heart of the transformer, attention has a computational complexity of O(N^2), compared to O(N) for linear transformations. When handling large sequence lengths, attention becomes the primary time-consuming component. Although quantization has proven to be an effective method for accelerating model inference, existing quantization methods primarily focus on optimizing the linear layer. In response, we first analyze the feasibility of quantization in attention detailedly. Following that, we propose SageAttention, a highly efficient and accurate quantization method for attention. The OPS (operations per second) of our approach outperforms FlashAttention2 and xformers by about 2.1 times and 2.7 times, respectively. SageAttention also achieves superior accuracy performance over FlashAttention3. Comprehensive experiments confirm that our approach incurs almost no end-to-end metrics loss across diverse models, including those for large language processing, image generation, and video generation.
Abstract:Intraoperative hypotension (IOH) prediction using Mean Arterial Pressure (MAP) is a critical research area with significant implications for patient outcomes during surgery. However, existing approaches predominantly employ static modeling paradigms that overlook the dynamic nature of physiological signals. In this paper, we introduce a novel Hybrid Multi-Factor (HMF) framework that reformulates IOH prediction as a blood pressure forecasting task. Our framework leverages a Transformer encoder, specifically designed to effectively capture the temporal evolution of MAP series through a patch-based input representation, which segments the input physiological series into informative patches for accurate analysis. To address the challenges of distribution shift in physiological series, our approach incorporates two key innovations: (1) Symmetric normalization and de-normalization processes help mitigate distributional drift in statistical properties, thereby ensuring the model's robustness across varying conditions, and (2) Sequence decomposition, which disaggregates the input series into trend and seasonal components, allowing for a more precise modeling of inherent sequence dependencies. Extensive experiments conducted on two real-world datasets demonstrate the superior performance of our approach compared to competitive baselines, particularly in capturing the nuanced variations in input series that are crucial for accurate IOH prediction.
Abstract:The lesion segmentation on endoscopic images is challenging due to its complex and ambiguous features. Fully-supervised deep learning segmentation methods can receive good performance based on entirely pixel-level labeled dataset but greatly increase experts' labeling burden. Semi-supervised and weakly supervised methods can ease labeling burden, but heavily strengthen the learning difficulty. To alleviate this difficulty, weakly semi-supervised segmentation adopts a new annotation protocol of adding a large number of point annotation samples into a few pixel-level annotation samples. However, existing methods only mine points' limited information while ignoring reliable prior surrounding the point annotations. In this paper, we propose a weakly semi-supervised method called Point-Neighborhood Learning (PNL) framework. To mine the prior of the pixels surrounding the annotated point, we transform a single-point annotation into a circular area named a point-neighborhood. We propose point-neighborhood supervision loss and pseudo-label scoring mechanism to enhance training supervision. Point-neighborhoods are also used to augment the data diversity. Our method greatly improves performance without changing the structure of segmentation network. Comprehensive experiments show the superiority of our method over the other existing methods, demonstrating its effectiveness in point-annotated medical images. The project code will be available on: https://github.com/ParryJay/PNL.
Abstract:High-frequency and accurate state estimation is crucial for biped robots. This paper presents a tightly-coupled LiDAR-Inertial-Kinematic Odometry (LIKO) for biped robot state estimation based on an iterated extended Kalman filter. Beyond state estimation, the foot contact position is also modeled and estimated. This allows for both position and velocity updates from kinematic measurement. Additionally, the use of kinematic measurement results in an increased output state frequency of about 1kHz. This ensures temporal continuity of the estimated state and makes it practical for control purposes of biped robots. We also announce a biped robot dataset consisting of LiDAR, inertial measurement unit (IMU), joint encoders, force/torque (F/T) sensors, and motion capture ground truth to evaluate the proposed method. The dataset is collected during robot locomotion, and our approach reached the best quantitative result among other LIO-based methods and biped robot state estimation algorithms. The dataset and source code will be available at https://github.com/Mr-Zqr/LIKO.
Abstract:Manifold regularization model is a semi-supervised learning model that leverages the geometric structure of a dataset, comprising a small number of labeled samples and a large number of unlabeled samples, to generate classifiers. However, the original manifold norm limits the performance of models to local regions. To address this limitation, this paper proposes an approach to improve manifold regularization based on a label propagation model. We initially enhance the probability transition matrix of the diffusion map algorithm, which can be used to estimate the Neumann heat kernel, enabling it to accurately depict the label propagation process on the manifold. Using this matrix, we establish a label propagation function on the dataset to describe the distribution of labels at different time steps. Subsequently, we extend the label propagation function to the entire data manifold. We prove that the extended label propagation function converges to a stable distribution after a sufficiently long time and can be considered as a classifier. Building upon this concept, we propose a viable improvement to the manifold regularization model and validate its superiority through experiments.
Abstract:Deep Convolutional Neural Network (DCNNs) come to be the most widely used solution for most computer vision related tasks, and one of the most important application scenes is face verification. Due to its high-accuracy performance, deep face verification models of which the inference stage occurs on cloud platform through internet plays the key role on most prectical scenes. However, two critical issues exist: First, individual privacy may not be well protected since they have to upload their personal photo and other private information to the online cloud backend. Secondly, either training or inference stage is time-comsuming and the latency may affect customer experience, especially when the internet link speed is not so stable or in remote areas where mobile reception is not so good, but also in cities where building and other construction may block mobile signals. Therefore, designing lightweight networks with low memory requirement and computational cost is one of the most practical solutions for face verification on mobile platform. In this paper, a novel mobile network named SeesawFaceNets, a simple but effective model, is proposed for productively deploying face recognition for mobile devices. Dense experimental results have shown that our proposed model SeesawFaceNets outperforms the baseline MobilefaceNets, with only {\bf66\%}(146M VS 221M MAdds) computational cost, smaller batch size and less training steps, and SeesawFaceNets achieve comparable performance with other SOTA model e.g. mobiface with only {\bf54.2\%}(1.3M VS 2.4M) parameters and {\bf31.6\%}(146M VS 462M MAdds) computational cost, It is also eventually competitive against large-scale deep-networks face recognition on all 5 listed public validation datasets, with {\bf6.5\%}(4.2M VS 65M) parameters and {\bf4.35\%}(526M VS 12G MAdds) computational cost.
Abstract:In this paper, we are interested in boosting the representation capability of convolution neural networks which utilizing the inverted residual structure. Based on the success of Inverted Residual structure[Sandler et al. 2018] and Interleaved Low-Rank Group Convolutions[Sun et al. 2018], we rethink this two pattern of neural network structure, rather than NAS(Neural architecture search) method[Zoph and Le 2017; Pham et al. 2018; Liu et al. 2018b], we introduce uneven point-wise group convolution, which provide a novel search space for designing basic blocks to obtain better trade-off between representation capability and computational cost. Meanwhile, we propose two novel information flow patterns that will enable cross-group information flow for multiple group convolution layers with and without any channel permute/shuffle operation. Dense experiments on image classification task show that our proposed model, named Seesaw-Net, achieves state-of-the-art(SOTA) performance with limited computation and memory cost. Our code will be open-source and available together with pre-trained models.
Abstract:This paper presents a programmable in-memory-computing processor, demonstrated in a 65nm CMOS technology. For data-centric workloads, such as deep neural networks, data movement often dominates when implemented with today's computing architectures. This has motivated spatial architectures, where the arrangement of data-storage and compute hardware is distributed and explicitly aligned to the computation dataflow, most notably for matrix-vector multiplication. In-memory computing is a spatial architecture where processing elements correspond to dense bit cells, providing local storage and compute, typically employing analog operation. Though this raises the potential for high energy efficiency and throughput, analog operation has significantly limited robustness, scale, and programmability. This paper describes a 590kb in-memory-computing accelerator integrated in a programmable processor architecture, by exploiting recent approaches to charge-domain in-memory computing. The architecture takes the approach of tight coupling with an embedded CPU, through accelerator interfaces enabling integration in the standard processor memory space. Additionally, a near-memory-computing datapath both enables diverse computations locally, to address operations required across applications, and enables bit-precision scalability for matrix/input-vector elements, through a bit-parallel/bit-serial (BP/BS) scheme. Chip measurements show an energy efficiency of 152/297 1b-TOPS/W and throughput of 4.7/1.9 1b-TOPS (scaling linearly with the matrix/input-vector element precisions) at VDD of 1.2/0.85V. Neural network demonstrations with 1-b/4-b weights and activations for CIFAR-10 classification consume 5.3/105.2 $\mu$J/image at 176/23 fps, with accuracy at the level of digital/software implementation (89.3/92.4 $\%$ accuracy).