Abstract:Although state-of-the-art (SOTA) SAT solvers based on conflict-driven clause learning (CDCL) have achieved remarkable engineering success, their sequential nature limits the parallelism that may be extracted for acceleration on platforms such as the graphics processing unit (GPU). In this work, we propose FastFourierSAT, a highly parallel hybrid SAT solver based on gradient-driven continuous local search (CLS). This is realized by a novel parallel algorithm inspired by the Fast Fourier Transform (FFT)-based convolution for computing the elementary symmetric polynomials (ESPs), which is the major computational task in previous CLS methods. The complexity of our algorithm matches the best previous result. Furthermore, the substantial parallelism inherent in our algorithm can leverage the GPU for acceleration, demonstrating significant improvement over the previous CLS approaches. We also propose to incorporate the restart heuristics in CLS to improve search efficiency. We compare our approach with the SOTA parallel SAT solvers on several benchmarks. Our results show that FastFourierSAT computes the gradient 100+ times faster than previous prototypes implemented on CPU. Moreover, FastFourierSAT solves most instances and demonstrates promising performance on larger-size instances.
Abstract:Simulated annealing (SA) attracts more attention among classical heuristic algorithms because the solution of the combinatorial optimization problem can be naturally mapped to the ground state of the Ising Hamiltonian. However, in practical implementation, the annealing process cannot be arbitrarily slow and hence, it may deviate from the expected stationary Boltzmann distribution and become trapped in a local energy minimum. To overcome this problem, this paper proposes a heuristic search algorithm by expanding search space from a Markov chain to a recursive depth limited tree based on SA, where the parent and child nodes represent the current and future spin states. At each iteration, the algorithm will select the best near-optimal solution within the feasible search space by exploring along the tree in the sense of `look ahead'. Furthermore, motivated by coherent Ising machine (CIM), we relax the discrete representation of spin states to continuous representation with a regularization term and utilize the reduced dynamics of the oscillators to explore the surrounding neighborhood of the selected tree nodes. We tested our algorithm on a representative NP-hard problem (MAX-CUT) to illustrate the effectiveness of this algorithm compared to semi-definite programming (SDP), SA, and simulated CIM. Our results show that above the primal heuristics SA and CIM, our high-level tree search strategy is able to provide solutions within fewer epochs for Ising formulated NP-optimization problems.
Abstract:Long training time hinders the potential of the deep Spiking Neural Network (SNN) with the online learning capability to be realized on the embedded systems hardware. Our work proposes a novel connection pruning approach that can be applied during the online Spike Timing Dependent Plasticity (STDP)-based learning to optimize the learning time and the network connectivity of the SNN. Our connection pruning approach was evaluated on a deep SNN with the Time To First Spike (TTFS) coding and has successfully achieved 2.1x speed-up in the online learning and reduced the network connectivity by 92.83%. The energy consumption in the online learning was saved by 64%. Moreover, the connectivity reduction results in 2.83x speed-up and 78.24% energy saved in the inference. Meanwhile, the classification accuracy remains the same as our non-pruning baseline on the Caltech 101 dataset. In addition, we developed an event-driven hardware architecture on the Field Programmable Gate Array (FPGA) platform that efficiently incorporates our proposed connection pruning approach while incurring as little as 0.56% power overhead. Moreover, we performed a comparison between our work and the existing works on connection pruning for SNN to highlight the key features of each approach. To the best of our knowledge, our work is the first to propose a connection pruning algorithm that can be applied during the online STDP-based learning for a deep SNN with the TTFS coding.