Abstract:The non-perfect factors of practical photon-counting receiver are recognized as a significant challenge for long-distance photon-limited free-space optical (FSO) communication systems. This paper presents a comprehensive analytical framework for modeling the statistical properties of time-gated single-photon avalanche diode (TG-SPAD) based photon-counting receivers in presence of dead time, non-photon-number-resolving and afterpulsing effect. Drawing upon the non-Markovian characteristic of afterpulsing effect, we formulate a closed-form approximation for the probability mass function (PMF) of photon counts, when high-order pulse amplitude modulation (PAM) is used. Unlike the photon counts from a perfect photon-counting receiver, which adhere to a Poisson arrival process, the photon counts from a practical TG-SPAD based receiver are instead approximated by a binomial distribution. Additionally, by employing the maximum likelihood (ML) criterion, we derive a refined closed-form formula for determining the threshold in high-order PAM, thereby facilitating the development of an analytical model for the symbol error rate (SER). Utilizing this analytical SER model, the system performance is investigated. The numerical results underscore the crucial need to suppress background radiation below the tolerated threshold and to maintain a sufficient number of gates in order to achieve a target SER.
Abstract:This paper proposes a method for estimating and detecting optical signals in practical photon-counting receivers. There are two important aspects of non-perfect photon-counting receivers, namely, (i) dead time which results in blocking loss, and (ii) non-photon-number-resolving, which leads to counting loss during the gate-ON interval. These factors introduce nonlinear distortion to the detected photon counts. The detected photon counts depend not only on the optical intensity but also on the signal waveform, and obey a Poisson binomial process. Using the discrete Fourier transform characteristic function (DFT-CF) method, we derive the probability mass function (PMF) of the detected photon counts. Furthermore, unlike conventional methods that assume an ideal rectangle wave, we propose a novel signal estimation and decision method applicable to arbitrary waveform. We demonstrate that the proposed method achieves superior error performance compared to conventional methods. The proposed algorithm has the potential to become an essential signal processing tool for photon-counting receivers.
Abstract:Large visual-language models (LVLMs) exhibit exceptional performance in visual-language reasoning across diverse cross-modal benchmarks. Despite these advances, recent research indicates that Large Language Models (LLMs), like GPT-3.5-turbo, underachieve compared to well-trained smaller models, such as BERT, in Fake News Detection (FND), prompting inquiries into LVLMs' efficacy in FND tasks. Although performance could improve through fine-tuning LVLMs, the substantial parameters and requisite pre-trained weights render it a resource-heavy endeavor for FND applications. This paper initially assesses the FND capabilities of two notable LVLMs, CogVLM and GPT4V, in comparison to a smaller yet adeptly trained CLIP model in a zero-shot context. The findings demonstrate that LVLMs can attain performance competitive with that of the smaller model. Next, we integrate standard in-context learning (ICL) with LVLMs, noting improvements in FND performance, though limited in scope and consistency. To address this, we introduce the \textbf{I}n-context \textbf{M}ultimodal \textbf{F}ake \textbf{N}ews \textbf{D}etection (IMFND) framework, enriching in-context examples and test inputs with predictions and corresponding probabilities from a well-trained smaller model. This strategic integration directs the LVLMs' focus towards news segments associated with higher probabilities, thereby improving their analytical accuracy. The experimental results suggest that the IMFND framework significantly boosts the FND efficiency of LVLMs, achieving enhanced accuracy over the standard ICL approach across three publicly available FND datasets.
Abstract:The nascent topic of fake news requires automatic detection methods to quickly learn from limited annotated samples. Therefore, the capacity to rapidly acquire proficiency in a new task with limited guidance, also known as few-shot learning, is critical for detecting fake news in its early stages. Existing approaches either involve fine-tuning pre-trained language models which come with a large number of parameters, or training a complex neural network from scratch with large-scale annotated datasets. This paper presents a multimodal fake news detection model which augments multimodal features using unimodal features. For this purpose, we introduce Cross-Modal Augmentation (CMA), a simple approach for enhancing few-shot multimodal fake news detection by transforming n-shot classification into a more robust (n $\times$ z)-shot problem, where z represents the number of supplementary features. The proposed CMA achieves SOTA results over three benchmark datasets, utilizing a surprisingly simple linear probing method to classify multimodal fake news with only a few training samples. Furthermore, our method is significantly more lightweight than prior approaches, particularly in terms of the number of trainable parameters and epoch times. The code is available here: \url{https://github.com/zgjiangtoby/FND_fewshot}
Abstract:Neuronal morphology is essential for studying brain functioning and understanding neurodegenerative disorders. As the acquiring of real-world morphology data is expensive, computational approaches especially learning-based ones e.g. MorphVAE for morphology generation were recently studied, which are often conducted in a way of randomly augmenting a given authentic morphology to achieve plausibility. Under such a setting, this paper proposes \textbf{MorphGrower} which aims to generate more plausible morphology samples by mimicking the natural growth mechanism instead of a one-shot treatment as done in MorphVAE. Specifically, MorphGrower generates morphologies layer by layer synchronously and chooses a pair of sibling branches as the basic generation block, and the generation of each layer is conditioned on the morphological structure of previous layers and then generate morphologies via a conditional variational autoencoder with spherical latent space. Extensive experimental results on four real-world datasets demonstrate that MorphGrower outperforms MorphVAE by a notable margin. Our code will be publicly available to facilitate future research.
Abstract:The standard paradigm for fake news detection mainly utilizes text information to model the truthfulness of news. However, the discourse of online fake news is typically subtle and it requires expert knowledge to use textual information to debunk fake news. Recently, studies focusing on multimodal fake news detection have outperformed text-only methods. Recent approaches utilizing the pre-trained model to extract unimodal features, or fine-tuning the pre-trained model directly, have become a new paradigm for detecting fake news. Again, this paradigm either requires a large number of training instances, or updates the entire set of pre-trained model parameters, making real-world fake news detection impractical. Furthermore, traditional multimodal methods fuse the cross-modal features directly without considering that the uncorrelated semantic representation might inject noise into the multimodal features. This paper proposes a Similarity-Aware Multimodal Prompt Learning (SAMPLE) framework. First, we incorporate prompt learning into multimodal fake news detection. Prompt learning, which only tunes prompts with a frozen language model, can reduce memory usage significantly and achieve comparable performances, compared with fine-tuning. We analyse three prompt templates with a soft verbalizer to detect fake news. In addition, we introduce the similarity-aware fusing method to adaptively fuse the intensity of multimodal representation and mitigate the noise injection via uncorrelated cross-modal features. For evaluation, SAMPLE surpasses the F1 and the accuracies of previous works on two benchmark multimodal datasets, demonstrating the effectiveness of the proposed method in detecting fake news. In addition, SAMPLE also is superior to other approaches regardless of few-shot and data-rich settings.