Abstract:Alignment of Large Language models (LLMs) is crucial for safe and trustworthy deployment in applications. Reinforcement learning from human feedback (RLHF) has emerged as an effective technique to align LLMs to human preferences and broader utilities, but it requires updating billions of model parameters, which is computationally expensive. Controlled Decoding, by contrast, provides a mechanism for aligning a model at inference time without retraining. However, single-agent decoding approaches often struggle to adapt to diverse tasks due to the complexity and variability inherent in these tasks. To strengthen the test-time performance w.r.t the target task, we propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies. Treating each prior policy as an agent in the spirit of mixture of agent collaboration, we develop a decoding method that allows for inference-time alignment through a token-level selection strategy among multiple agents. For each token, the most suitable LLM is dynamically chosen from a pool of models based on a long-term utility metric. This policy-switching mechanism ensures optimal model selection at each step, enabling efficient collaboration and alignment among LLMs during decoding. Theoretical analysis of our proposed algorithm establishes optimal performance with respect to the target task represented via a target reward for the given off-the-shelf models. We conduct comprehensive empirical evaluations with open-source aligned models on diverse tasks and preferences, which demonstrates the merits of this approach over single-agent decoding baselines. Notably, Collab surpasses the current SoTA decoding strategy, achieving an improvement of up to 1.56x in average reward and 71.89% in GPT-4 based win-tie rate.
Abstract:Verification is crucial for effective mathematical reasoning. We present a new temporal consistency method where verifiers iteratively refine their judgments based on the previous assessment. Unlike one-round verification or multi-model debate approaches, our method leverages consistency in a sequence of self-reflection actions to improve verification accuracy. Empirical evaluations across diverse mathematical process error identification benchmarks (Mathcheck, ProcessBench, and PRM800K) show consistent performance improvements over baseline methods. When applied to the recent DeepSeek R1 distilled models, our method demonstrates strong performance, enabling 7B/8B distilled models to outperform all 70B/72B models and GPT-4o on ProcessBench. Notably, the distilled 14B model with our method achieves performance comparable to Deepseek-R1. Our codes are available at https://github.com/jcguo123/Temporal-Consistency
Abstract:The safe and effective deployment of Large Language Models (LLMs) involves a critical step called alignment, which ensures that the model's responses are in accordance with human preferences. Prevalent alignment techniques, such as DPO, PPO and their variants, align LLMs by changing the pre-trained model weights during a phase called post-training. While predominant, these post-training methods add substantial complexity before LLMs can be deployed. Inference-time alignment methods avoid the complex post-training step and instead bias the generation towards responses that are aligned with human preferences. The best-known inference-time alignment method, called Best-of-N, is as effective as the state-of-the-art post-training procedures. Unfortunately, Best-of-N requires vastly more resources at inference time than standard decoding strategies, which makes it computationally not viable. In this work, we introduce Speculative Rejection, a computationally-viable inference-time alignment algorithm. It generates high-scoring responses according to a given reward model, like Best-of-N does, while being between 16 to 32 times more computationally efficient.
Abstract:Inference-time alignment enhances the performance of large language models without requiring additional training or fine-tuning but presents challenges due to balancing computational efficiency with high-quality output. Best-of-N (BoN) sampling, as a simple yet powerful approach, generates multiple responses and selects the best one, achieving improved performance but with a high computational cost. We propose TreeBoN, a novel framework that integrates a speculative tree-search strategy into Best-of-N (BoN) Sampling. TreeBoN maintains a set of parent nodes, iteratively branching and pruning low-quality responses, thereby reducing computational overhead while maintaining high output quality. Our approach also leverages token-level rewards from Direct Preference Optimization (DPO) to guide tree expansion and prune low-quality paths. We evaluate TreeBoN using AlpacaFarm, UltraFeedback, GSM8K, HH-RLHF, and TutorEval datasets, demonstrating consistent improvements. Specifically, TreeBoN achieves a 65% win rate at maximum lengths of 192 and 384 tokens, outperforming standard BoN with the same computational cost. Furthermore, TreeBoN achieves around a 60% win rate across longer responses, showcasing its scalability and alignment efficacy.
Abstract:Reinforcement Learning from Human Feedback (RLHF) aligns language models to human preferences by employing a singular reward model derived from preference data. However, such an approach overlooks the rich diversity of human preferences inherent in data collected from multiple users. In this work, we first derive an impossibility result of alignment with single reward RLHF, thereby highlighting its insufficiency in representing diverse human preferences. To provide an equitable solution to the problem, we learn a mixture of preference distributions via an expectation-maximization algorithm and propose a MaxMin alignment objective for policy learning inspired by the Egalitarian principle in social choice theory to better represent diverse human preferences. We elucidate the connection of our proposed approach to distributionally robust optimization and general utility RL, thereby highlighting the generality and robustness of our proposed solution. We present comprehensive experimental results on small-scale (GPT-2) and large-scale language models (with Tulu2-7B) and show the efficacy of the proposed approach in the presence of diversity among human preferences. Our algorithm achieves an average improvement of more than 16% in win-rates over conventional RLHF algorithms and improves the win-rate (accuracy) for minority groups by over 33% without compromising the performance of majority groups, showcasing the robustness and fairness of our approach. We remark that our findings in this work are not only limited to language models but also extend to reinforcement learning in general.
Abstract:While modern biotechnologies allow synthesizing new proteins and function measurements at scale, efficiently exploring a protein sequence space and engineering it remains a daunting task due to the vast sequence space of any given protein. Protein engineering is typically conducted through an iterative process of adding mutations to the wild-type or lead sequences, recombination of mutations, and running new rounds of screening. To enhance the efficiency of such a process, we propose a tree search-based bandit learning method, which expands a tree starting from the initial sequence with the guidance of a bandit machine learning model. Under simplified assumptions and a Gaussian Process prior, we provide theoretical analysis and a Bayesian regret bound, demonstrating that the combination of local search and bandit learning method can efficiently discover a near-optimal design. The full algorithm is compatible with a suite of randomized tree search heuristics, machine learning models, pre-trained embeddings, and bandit techniques. We test various instances of the algorithm across benchmark protein datasets using simulated screens. Experiment results demonstrate that the algorithm is both sample-efficient and able to find top designs using reasonably small mutation counts.
Abstract:While transferring a pretrained language model, common approaches conventionally attach their task-specific classifiers to the top layer and adapt all the pretrained layers. We investigate whether one could make a task-specific selection on which subset of the layers to adapt and where to place the classifier. The goal is to reduce the computation cost of transfer learning methods (e.g. fine-tuning or adapter-tuning) without sacrificing its performance. We propose to select layers based on the variability of their hidden states given a task-specific corpus. We say a layer is already "well-specialized" in a task if the within-class variability of its hidden states is low relative to the between-class variability. Our variability metric is cheap to compute and doesn't need any training or hyperparameter tuning. It is robust to data imbalance and data scarcity. Extensive experiments on the GLUE benchmark demonstrate that selecting layers based on our metric can yield significantly stronger performance than using the same number of top layers and often match the performance of fine-tuning or adapter-tuning the entire language model.