Abstract:Text plays a crucial role in the transmission of human civilization, and teaching machines to generate online handwritten text in various styles presents an interesting and significant challenge. However, most prior work has concentrated on generating individual Chinese fonts, leaving {complete text line generation largely unexplored}. In this paper, we identify that text lines can naturally be divided into two components: layout and glyphs. Based on this division, we designed a text line layout generator coupled with a diffusion-based stylized font synthesizer to address this challenge hierarchically. More concretely, the layout generator performs in-context-like learning based on the text content and the provided style references to generate positions for each glyph autoregressively. Meanwhile, the font synthesizer which consists of a character embedding dictionary, a multi-scale calligraphy style encoder, and a 1D U-Net based diffusion denoiser will generate each font on its position while imitating the calligraphy style extracted from the given style references. Qualitative and quantitative experiments on the CASIA-OLHWDB demonstrate that our method is capable of generating structurally correct and indistinguishable imitation samples.
Abstract:The machine learning problem of extracting neural network parameters has been proposed for nearly three decades. Functionally equivalent extraction is a crucial goal for research on this problem. When the adversary has access to the raw output of neural networks, various attacks, including those presented at CRYPTO 2020 and EUROCRYPT 2024, have successfully achieved this goal. However, this goal is not achieved when neural networks operate under a hard-label setting where the raw output is inaccessible. In this paper, we propose the first attack that theoretically achieves functionally equivalent extraction under the hard-label setting, which applies to ReLU neural networks. The effectiveness of our attack is validated through practical experiments on a wide range of ReLU neural networks, including neural networks trained on two real benchmarking datasets (MNIST, CIFAR10) widely used in computer vision. For a neural network consisting of $10^5$ parameters, our attack only requires several hours on a single core.
Abstract:Recently, multimodal large language models (MM-LLMs) have achieved great success in many multimodal tasks, but their high computational costs limit their further promotion and application. In the MM-LLMs framework, the main computational consumption step is the processing of concatenated text and visual tokens at the LLM layer. The length of the input token for LLM directly affects the overall training and inference efficiency. In response to this issue, we further studied the visual tokens of MM-LLMs. We found that the similarity between visual and CLS tokens in the visual encoder follows a long-tail distribution. In other words, only a few visual tokens are highly similar to CLS tokens. Therefore, we designed a dynamic pruning algorithm to address this issue. Firstly, for different input samples, we search for the inflection point of their visual CLS token similarity curve and use it as the corresponding segmentation point to trim the visual markers. This process mainly reduces the output of the visual encoder to accelerate the model. Then, in the LLM layer, the concatenated visual text tokens are pruned for the second time. During this process, due to the interaction between visual and textual features, visual and textual tokens with low text correlation are further filtered, achieving a balance between efficiency and performance. The results on multiple datasets show that our proposed method can achieve performance that competes with the original performance when using an average of 22% of the original token quantity. Our source code will be made publicly available following acceptance.
Abstract:With the advancement of large-scale language modeling techniques, large multimodal models combining visual encoders with large language models have demonstrated exceptional performance in various visual tasks. Most of the current large-scale multimodal models achieve this by mapping visual features obtained from the visual encoder into a large language model and using them as inputs alongside text for downstream tasks. Therefore, the number of visual tokens directly affects the training and inference speed of the model. There has been significant work on token pruning for visual transformers, but for large multimodal models, only relying on visual information for token pruning or compression may lead to significant loss of important information. On the other hand, the textual input in the form of a question may contain valuable information that can aid in answering the question, providing additional knowledge to the model. To address the potential oversimplification and excessive pruning that can occur with most purely visual token pruning methods, we propose a text information-guided dynamic visual token recovery mechanism that does not require training. This mechanism leverages the similarity between the question text and visual tokens to recover visually meaningful tokens with important text information while merging other less important tokens. Experimental results demonstrate that our proposed method achieves comparable performance to the original approach while compressing the visual tokens to an average of 10% of the original quantity. Our source code will be made publicly available following acceptance.
Abstract:Video generation models hold substantial potential in areas such as filmmaking. However, current video diffusion models need high computational costs and produce suboptimal results due to high complexity of video generation task. In this paper, we propose \textbf{ConFiner}, an efficient high-quality video generation framework that decouples video generation into easier subtasks: structure \textbf{con}trol and spatial-temporal re\textbf{fine}ment. It can generate high-quality videos with chain of off-the-shelf diffusion model experts, each expert responsible for a decoupled subtask. During the refinement, we introduce coordinated denoising, which can merge multiple diffusion experts' capabilities into a single sampling. Furthermore, we design ConFiner-Long framework, which can generate long coherent video with three constraint strategies on ConFiner. Experimental results indicate that with only 10\% of the inference cost, our ConFiner surpasses representative models like Lavie and Modelscope across all objective and subjective metrics. And ConFiner-Long can generate high-quality and coherent videos with up to 600 frames.
Abstract:Artificial intelligence (AI)-based decision support systems have demonstrated value in predicting post-hepatectomy liver failure (PHLF) in hepatocellular carcinoma (HCC). However, they often lack transparency, and the impact of model explanations on clinicians' decisions has not been thoroughly evaluated. Building on prior research, we developed a variational autoencoder-multilayer perceptron (VAE-MLP) model for preoperative PHLF prediction. This model integrated counterfactuals and layerwise relevance propagation (LRP) to provide insights into its decision-making mechanism. Additionally, we proposed a methodological framework for evaluating the explainability of AI systems. This framework includes qualitative and quantitative assessments of explanations against recognized biomarkers, usability evaluations, and an in silico clinical trial. Our evaluations demonstrated that the model's explanation correlated with established biomarkers and exhibited high usability at both the case and system levels. Furthermore, results from the three-track in silico clinical trial showed that clinicians' prediction accuracy and confidence increased when AI explanations were provided.
Abstract:Large foundation models pretrained on raw web-scale data are not readily deployable without additional step of extensive alignment to human preferences. Such alignment is typically done by collecting large amounts of pairwise comparisons from humans ("Do you prefer output A or B?") and learning a reward model or a policy with the Bradley-Terry-Luce (BTL) model as a proxy for a human's underlying implicit preferences. These methods generally suffer from assuming a universal preference shared by all humans, which lacks the flexibility of adapting to plurality of opinions and preferences. In this work, we propose PAL, a framework to model human preference complementary to existing pretraining strategies, which incorporates plurality from the ground up. We propose using the ideal point model as a lens to view alignment using preference comparisons. Together with our novel reformulation and using mixture modeling, our framework captures the plurality of population preferences while simultaneously learning a common preference latent space across different preferences, which can few-shot generalize to new, unseen users. Our approach enables us to use the penultimate-layer representation of large foundation models and simple MLP layers to learn reward functions that are on-par with the existing large state-of-the-art reward models, thereby enhancing efficiency of reward modeling significantly. We show that PAL achieves competitive reward model accuracy compared to strong baselines on 1) Language models with Summary dataset ; 2) Image Generative models with Pick-a-Pic dataset ; 3) A new semisynthetic heterogeneous dataset generated using Anthropic Personas. Finally, our experiments also highlight the shortcoming of current preference datasets that are created using rigid rubrics which wash away heterogeneity, and call for more nuanced data collection approaches.
Abstract:Unsupervised Reinforcement Learning (RL) provides a promising paradigm for learning useful behaviors via reward-free per-training. Existing methods for unsupervised RL mainly conduct empowerment-driven skill discovery or entropy-based exploration. However, empowerment often leads to static skills, and pure exploration only maximizes the state coverage rather than learning useful behaviors. In this paper, we propose a novel unsupervised RL framework via an ensemble of skills, where each skill performs partition exploration based on the state prototypes. Thus, each skill can explore the clustered area locally, and the ensemble skills maximize the overall state coverage. We adopt state-distribution constraints for the skill occupancy and the desired cluster for learning distinguishable skills. Theoretical analysis is provided for the state entropy and the resulting skill distributions. Based on extensive experiments on several challenging tasks, we find our method learns well-explored ensemble skills and achieves superior performance in various downstream tasks compared to previous methods.
Abstract:Comprehending text-rich visual content is paramount for the practical application of Multimodal Large Language Models (MLLMs), since text-rich scenarios are ubiquitous in the real world, which are characterized by the presence of extensive texts embedded within images. Recently, the advent of MLLMs with impressive versatility has raised the bar for what we can expect from MLLMs. However, their proficiency in text-rich scenarios has yet to be comprehensively and objectively assessed, since current MLLM benchmarks primarily focus on evaluating general visual comprehension. In this work, we introduce SEED-Bench-2-Plus, a benchmark specifically designed for evaluating \textbf{text-rich visual comprehension} of MLLMs. Our benchmark comprises 2.3K multiple-choice questions with precise human annotations, spanning three broad categories: Charts, Maps, and Webs, each of which covers a wide spectrum of text-rich scenarios in the real world. These categories, due to their inherent complexity and diversity, effectively simulate real-world text-rich environments. We further conduct a thorough evaluation involving 34 prominent MLLMs (including GPT-4V, Gemini-Pro-Vision and Claude-3-Opus) and emphasize the current limitations of MLLMs in text-rich visual comprehension. We hope that our work can serve as a valuable addition to existing MLLM benchmarks, providing insightful observations and inspiring further research in the area of text-rich visual comprehension with MLLMs. The dataset and evaluation code can be accessed at https://github.com/AILab-CVC/SEED-Bench.
Abstract:We investigate the non-stationary stochastic linear bandit problem where the reward distribution evolves each round. Existing algorithms characterize the non-stationarity by the total variation budget $B_K$, which is the summation of the change of the consecutive feature vectors of the linear bandits over $K$ rounds. However, such a quantity only measures the non-stationarity with respect to the expectation of the reward distribution, which makes existing algorithms sub-optimal under the general non-stationary distribution setting. In this work, we propose algorithms that utilize the variance of the reward distribution as well as the $B_K$, and show that they can achieve tighter regret upper bounds. Specifically, we introduce two novel algorithms: Restarted Weighted$\text{OFUL}^+$ and Restarted $\text{SAVE}^+$. These algorithms address cases where the variance information of the rewards is known and unknown, respectively. Notably, when the total variance $V_K$ is much smaller than $K$, our algorithms outperform previous state-of-the-art results on non-stationary stochastic linear bandits under different settings. Experimental evaluations further validate the superior performance of our proposed algorithms over existing works.