Abstract:Semi-supervised semantic segmentation has attracted considerable attention for its ability to mitigate the reliance on extensive labeled data. However, existing consistency regularization methods only utilize high certain pixels with prediction confidence surpassing a fixed threshold for training, failing to fully leverage the potential supervisory information within the network. Therefore, this paper proposes the Uncertainty-participation Context Consistency Learning (UCCL) method to explore richer supervisory signals. Specifically, we first design the semantic backpropagation update (SBU) strategy to fully exploit the knowledge from uncertain pixel regions, enabling the model to learn consistent pixel-level semantic information from those areas. Furthermore, we propose the class-aware knowledge regulation (CKR) module to facilitate the regulation of class-level semantic features across different augmented views, promoting consistent learning of class-level semantic information within the encoder. Experimental results on two public benchmarks demonstrate that our proposed method achieves state-of-the-art performance. Our code is available at https://github.com/YUKEKEJAN/UCCL.
Abstract:Existing approaches focus on using class-level features to improve semantic segmentation performance. How to characterize the relationships of intra-class pixels and inter-class pixels is the key to extract the discriminative representative class-level features. In this paper, we introduce for the first time to describe intra-class variations by multiple distributions. Then, multiple distributions representation learning(\textbf{MDRL}) is proposed to augment the pixel representations for semantic segmentation. Meanwhile, we design a class multiple distributions consistency strategy to construct discriminative multiple distribution representations of embedded pixels. Moreover, we put forward a multiple distribution semantic aggregation module to aggregate multiple distributions of the corresponding class to enhance pixel semantic information. Our approach can be seamlessly integrated into popular segmentation frameworks FCN/PSPNet/CCNet and achieve 5.61\%/1.75\%/0.75\% mIoU improvements on ADE20K. Extensive experiments on the Cityscapes, ADE20K datasets have proved that our method can bring significant performance improvement.