Abstract:In recent years,Text-to-SQL, the problem of automatically converting questions posed in natural language to formal SQL queries, has emerged as an important problem at the intersection of natural language processing and data management research. Large language models (LLMs) have delivered impressive performance when used in an off-the-shelf performance, but still fall significantly short of expected expert-level performance. Errors are especially probable when a nuanced understanding is needed of database schemas, questions, and SQL clauses to do proper Text-to-SQL conversion. We introduce SelECT-SQL, a novel in-context learning solution that uses an algorithmic combination of chain-of-thought (CoT) prompting, self-correction, and ensemble methods to yield a new state-of-the-art result on challenging Text-to-SQL benchmarks. Specifically, when configured using GPT-3.5-Turbo as the base LLM, SelECT-SQL achieves 84.2% execution accuracy on the Spider leaderboard's development set, exceeding both the best results of other baseline GPT-3.5-Turbo-based solutions (81.1%), and the peak performance (83.5%) of the GPT-4 result reported on the leaderboard.
Abstract:Despite their impressive performance, large language models (LLMs) such as ChatGPT are known to pose important risks. One such set of risks arises from misplaced confidence, whether over-confidence or under-confidence, that the models have in their inference. While the former is well studied, the latter is not, leading to an asymmetry in understanding the comprehensive risk of the model based on misplaced confidence. In this paper, we address this asymmetry by defining two types of risk (decision and composite risk), and proposing an experimental framework consisting of a two-level inference architecture and appropriate metrics for measuring such risks in both discriminative and generative LLMs. The first level relies on a decision rule that determines whether the underlying language model should abstain from inference. The second level (which applies if the model does not abstain) is the model's inference. Detailed experiments on four natural language commonsense reasoning datasets using both an open-source ensemble-based RoBERTa model and ChatGPT, demonstrate the practical utility of the evaluation framework. For example, our results show that our framework can get an LLM to confidently respond to an extra 20.1% of low-risk inference tasks that other methods might misclassify as high-risk, and skip 19.8% of high-risk tasks, which would have been answered incorrectly.
Abstract:Words of estimative probability (WEPs), such as ''maybe'' or ''probably not'' are ubiquitous in natural language for communicating estimative uncertainty, compared with direct statements involving numerical probability. Human estimative uncertainty, and its calibration with numerical estimates, has long been an area of study -- including by intelligence agencies like the CIA. This study compares estimative uncertainty in commonly used large language models (LLMs) like GPT-4 and ERNIE-4 to that of humans, and to each other. Here we show that LLMs like GPT-3.5 and GPT-4 align with human estimates for some, but not all, WEPs presented in English. Divergence is also observed when the LLM is presented with gendered roles and Chinese contexts. Further study shows that an advanced LLM like GPT-4 can consistently map between statistical and estimative uncertainty, but a significant performance gap remains. The results contribute to a growing body of research on human-LLM alignment.
Abstract:Large Language Models (LLMs), such as ChatGPT, have achieved impressive milestones in natural language processing (NLP). Despite their impressive performance, the models are known to pose important risks. As these models are deployed in real-world applications, a systematic understanding of different risks posed by these models on tasks such as natural language inference (NLI), is much needed. In this paper, we define and formalize two distinct types of risk: decision risk and composite risk. We also propose a risk-centric evaluation framework, and four novel metrics, for assessing LLMs on these risks in both in-domain and out-of-domain settings. Finally, we propose a risk-adjusted calibration method called DwD for helping LLMs minimize these risks in an overall NLI architecture. Detailed experiments, using four NLI benchmarks, three baselines and two LLMs, including ChatGPT, show both the practical utility of the evaluation framework, and the efficacy of DwD in reducing decision and composite risk. For instance, when using DwD, an underlying LLM is able to address an extra 20.1% of low-risk inference tasks (but which the LLM erroneously deems high-risk without risk adjustment) and skip a further 19.8% of high-risk tasks, which would have been answered incorrectly.
Abstract:Recent work on transformer-based neural networks has led to impressive advances on multiple-choice natural language understanding (NLU) problems, such as Question Answering (QA) and abductive reasoning. Despite these advances, there is limited work still on understanding whether these models respond to perturbed multiple-choice instances in a sufficiently robust manner that would allow them to be trusted in real-world situations. We present four confusion probes, inspired by similar phenomena first identified in the behavioral science community, to test for problems such as prior bias and choice paralysis. Experimentally, we probe a widely used transformer-based multiple-choice NLU system using four established benchmark datasets. Here we show that the model exhibits significant prior bias and to a lesser, but still highly significant degree, choice paralysis, in addition to other problems. Our results suggest that stronger testing protocols and additional benchmarks may be necessary before the language models are used in front-facing systems or decision making with real world consequences.
Abstract:Acquiring commonsense knowledge and reasoning is an important goal in modern NLP research. Despite much progress, there is still a lack of understanding (especially at scale) of the nature of commonsense knowledge itself. A potential source of structured commonsense knowledge that could be used to derive insights is ConceptNet. In particular, ConceptNet contains several coarse-grained relations, including HasContext, FormOf and SymbolOf, which can prove invaluable in understanding broad, but critically important, commonsense notions such as 'context'. In this article, we present a methodology based on unsupervised knowledge graph representation learning and clustering to reveal and study substructures in three heavily used commonsense relations in ConceptNet. Our results show that, despite having an 'official' definition in ConceptNet, many of these commonsense relations exhibit considerable sub-structure. In the future, therefore, such relations could be sub-divided into other relations with more refined definitions. We also supplement our core study with visualizations and qualitative analyses.
Abstract:Programming machines with commonsense reasoning (CSR) abilities is a longstanding challenge in the Artificial Intelligence community. Current CSR benchmarks use multiple-choice (and in relatively fewer cases, generative) question-answering instances to evaluate machine commonsense. Recent progress in transformer-based language representation models suggest that considerable progress has been made on existing benchmarks. However, although tens of CSR benchmarks currently exist, and are growing, it is not evident that the full suite of commonsense capabilities have been systematically evaluated. Furthermore, there are doubts about whether language models are 'fitting' to a benchmark dataset's training partition by picking up on subtle, but normatively irrelevant (at least for CSR), statistical features to achieve good performance on the testing partition. To address these challenges, we propose a benchmark called Theoretically-Grounded Commonsense Reasoning (TG-CSR) that is also based on discriminative question answering, but with questions designed to evaluate diverse aspects of commonsense, such as space, time, and world states. TG-CSR is based on a subset of commonsense categories first proposed as a viable theory of commonsense by Gordon and Hobbs. The benchmark is also designed to be few-shot (and in the future, zero-shot), with only a few training and validation examples provided. This report discusses the structure and construction of the benchmark. Preliminary results suggest that the benchmark is challenging even for advanced language representation models designed for discriminative CSR question answering tasks. Benchmark access and leaderboard: https://codalab.lisn.upsaclay.fr/competitions/3080 Benchmark website: https://usc-isi-i2.github.io/TGCSR/
Abstract:Acquiring commonsense knowledge and reasoning is recognized as an important frontier in achieving general Artificial Intelligence (AI). Recent research in the Natural Language Processing (NLP) community has demonstrated significant progress in this problem setting. Despite this progress, which is mainly on multiple-choice question answering tasks in limited settings, there is still a lack of understanding (especially at scale) of the nature of commonsense knowledge itself. In this paper, we propose and conduct a systematic study to enable a deeper understanding of commonsense knowledge by doing an empirical and structural analysis of the ConceptNet knowledge base. ConceptNet is a freely available knowledge base containing millions of commonsense assertions presented in natural language. Detailed experimental results on three carefully designed research questions, using state-of-the-art unsupervised graph representation learning ('embedding') and clustering techniques, reveal deep substructures in ConceptNet relations, allowing us to make data-driven and computational claims about the meaning of phenomena such as 'context' that are traditionally discussed only in qualitative terms. Furthermore, our methodology provides a case study in how to use data-science and computational methodologies for understanding the nature of an everyday (yet complex) psychological phenomenon that is an essential feature of human intelligence.
Abstract:Recently, transformer-based methods such as RoBERTa and GPT-3 have led to significant experimental advances in natural language processing tasks such as question answering and commonsense reasoning. The latter is typically evaluated through multiple benchmarks framed as multiple-choice instances of the former. According to influential leaderboards hosted by the Allen Institute (evaluating state-of-the-art performance on commonsense reasoning benchmarks), models based on such transformer methods are approaching human-like performance and have average accuracy well over 80% on many benchmarks. Since these are commonsense benchmarks, a model that generalizes on commonsense reasoning should not experience much performance loss across multiple commonsense benchmarks. In this paper, we study the generalization issue in detail by designing and conducting a rigorous scientific study. Using five common benchmarks, multiple controls and statistical analysis, we find clear evidence that fine-tuned commonsense language models still do not generalize well, even with moderate changes to the experimental setup, and may, in fact, be susceptible to dataset bias. We also perform selective studies, including qualitative and consistency analyses, to gain deeper insight into the problem.
Abstract:Products in an ecommerce catalog contain information-rich fields like description and bullets that can be useful to extract entities (attributes) using NER based systems. However, these fields are often verbose and contain lot of information that is not relevant from a search perspective. Treating each sentence within these fields equally can lead to poor full text match and introduce problems in extracting attributes to develop ontologies, semantic search etc. To address this issue, we describe two methods based on extractive summarization with reinforcement learning by leveraging information in product titles and search click through logs to rank sentences from bullets, description, etc. Finally, we compare the accuracy of these two models.